Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Auxin plays a central role in many aspects of plant growth and development. Auxin/Indole-3-Acetic Acid (Aux/IAA) genes cooperate with several other components in the perception and signaling of plant hormone auxin. An investigation of chickpea and soybean genomes revealed 22 and 63 putative Aux/IAA genes, respectively. These genes were classified into six subfamilies on the basis of phylogenetic analysis. Among 63 soybean Aux/IAA genes, 57 (90.5%) were found to be duplicated via whole genome duplication (WGD)/segmental events. Transposed duplication played a significant role in tandem arrangements between the members of different subfamilies. Analysis of Ka/Ks ratio of duplicated Aux/IAA genes revealed purifying selection pressure with restricted functional divergence. Promoter sequence analysis revealed several cis-regulatory elements related to auxin, abscisic acid, desiccation, salt, seed, and endosperm, indicating their role in development and stress responses. Expression analysis of chickpea and soybean Aux/IAA genes in various tissues and stages of development demonstrated tissue/stage specific differential expression. In soybean, at least 16 paralog pairs, duplicated via WGD/segmental events, showed almost indistinguishable expression pattern, but eight pairs exhibited significantly diverse expression patterns. Under abiotic stress conditions, such as desiccation, salinity and/or cold, many Aux/IAA genes of chickpea and soybean revealed differential expression. qRT-PCR analysis confirmed the differential expression patterns of selected Aux/IAA genes in chickpea. The analyses presented here provide insights on putative roles of chickpea and soybean Aux/IAA genes and will facilitate elucidation of their precise functions during development and abiotic stress responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621760PMC
http://dx.doi.org/10.3389/fpls.2015.00918DOI Listing

Publication Analysis

Top Keywords

aux/iaa genes
32
chickpea soybean
20
soybean aux/iaa
12
differential expression
12
aux/iaa
9
genes
9
wgd/segmental events
8
stress responses
8
expression patterns
8
abiotic stress
8

Similar Publications

From Growth to Survival: Aux/IAA Genes in Plant Development and Stress Management.

Plant Sci

September 2025

Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:

Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.

View Article and Find Full Text PDF

Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.

View Article and Find Full Text PDF

Background: The Aux/IAA protein is integral to the modulation of auxin signaling, which is essential for plant growth and development. However, systematic analysis on the Aux/IAA gene family in pineapple ( L.) remains unexplored.

View Article and Find Full Text PDF

Regulatory Mechanism of the GmMYB14 Transcription Factor on Auxin-Related Proteins in Soybean.

Int J Mol Sci

August 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

In a previous study, overexpressing () transgenic soybean plants displayed a semi-dwarfism and compact phenotype, which was regulated by the brassinosteroid (BR) pathway. However, the phenotype of plants could be partly rescued after spraying them with exogenous BR. This indicates that other hormones, in addition to BR, also play a role in regulating the architecture of plants.

View Article and Find Full Text PDF

Background: The invasive weed poses significant ecological threats, necessitating novel control strategies. This study investigated the phytotoxic potential of methyl indole-3-acetate (MEIAA) through foliar application. As a methylated derivative of IAA, MEIAA exists in plants at extremely low concentrations and exhibits herbicidal properties distinct from conventional auxin mimics such as 2,4-D.

View Article and Find Full Text PDF