98%
921
2 minutes
20
Unlabelled: We have established a cell-free in vitro system to study human papillomavirus type 16 (HPV16) assembly, a poorly understood process. L1/L2 capsomers, obtained from the disassembly of virus-like particles (VLPs), were incubated with nuclear extracts to provide access to the range of cellular proteins that would be available during assembly within the host cell. Incorporation of a reporter plasmid "pseudogenome" was dependent on the presence of both nuclear extract and ATP. Unexpectedly, L1/L2 VLPs that were not disassembled prior to incubation with a reassembly mixture containing nuclear extract also encapsidated a reporter plasmid. As with HPV pseudoviruses (PsV) generated intracellularly, infection by cell-free particles assembled in vitro required the presence of L2 and was susceptible to the same biochemical inhibitors, implying the cell-free assembled particles use the infectious pathway previously described for HPV16 produced in cell culture. Using biochemical and electron microscopy analyses, we observed that, in the presence of nuclear extract, intact VLPs partially disassemble, providing a mechanistic explanation to how the exogenous plasmid was packaged by these particles. Further, we provide evidence that capsids containing an <8-kb pseudogenome are resistant to the disassembly/reassembly reaction. Our results suggest a novel size discrimination mechanism for papillomavirus genome packaging in which particles undergo iterative rounds of disassembly/reassembly, seemingly sampling DNA until a suitably sized DNA is encountered, resulting in the formation of a stable virion structure.
Importance: Little is known about papillomavirus assembly biology due to the difficulties in propagating virus in vitro. The cell-free assembly method established in this paper reveals a new mechanism for viral genome packaging and will provide a tractable system for further dissecting papillomavirus assembly. The knowledge gained will increase our understanding of virus-host interactions, help to identify new targets for antiviral therapy, and allow for the development of new gene delivery systems based on in vitro-generated papillomavirus vectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702664 | PMC |
http://dx.doi.org/10.1128/JVI.02497-15 | DOI Listing |
J Am Chem Soc
September 2025
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Non-hydrogenative para-hydrogen-induced polarization (nhPHIP) has proven a powerful tool for the enhanced NMR detection of several classes of metabolites in complex mixtures. Particularly, compounds carrying an α-amino acid motif have been previously detected and quantified in biological samples and natural extracts at submicromolar concentrations using 2D nhPHIP NMR spectroscopy. This technique is here applied for the first time in a semi-targeted metabolomics NMR study on urine from patients suffering from Pyridoxine-Dependent Epilepsy (PDE), currently diagnosed by the presence of dilute unique biomarkers.
View Article and Find Full Text PDFPhytochemistry
September 2025
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Yunnan Key Laboratory of Research and Development for Natural Products, School of Chemical Science and Technology, School of Medicine and School of Pharmacy
In the present study, eight undescribed compounds, namely caseazins R-Y (1-8) were isolated from the twigs and leaves of Casearia kurzii (Flacourtiaceae). Their structures were elucidated by extensive spectroscopic analysis, nuclear magnetic resonance methods, X-ray diffraction analysis, and ECD calculations. Compound 1 was characterized as a rare 2,3-seco podocarpane carbon skeleton.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
College of Pharmacy, Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830017, China; State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy
Given the pivotal role of Flap endonuclease 1 (FEN1) in tumor pathogenesis and progression, the advancement of its activity and inhibitor assays holds significant importance for cancer research and drug screening. Herein, we proposed a convenient, visual and sensitive colorimetric biosensing platform for FEN1 activity detection by integrating the robust signal amplification power of rolling circle amplification (RCA), the target enrichment capability of magnetic beads (MB), and the high efficiency and visualization of urease-mediated litmus test. Based on the significant color transition with a clear response mechanism, quantitative analysis can be achieved by either spectroscopic or smartphone-based detection.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia.
We present a new measurement of the 2νββ half-life of ^{130}Te (T_{1/2}^{2ν}) using the first complete model of the CUORE data, based on 1038 kg yr of collected exposure. Thanks to optimized data selection, we achieve a factor of two improvement in precision, obtaining T_{1/2}^{2ν}=(9.32 _{-0.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.