Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Efficient synthetic routes for the preparation of secondary and tertiary 1,2,3-triazoloamide derivatives were developed. A secondary α-1,2,3-triazoloamide library was constructed and expanded by a previously developed solid-phase synthetic route and a tertiary 1,2,3-triazoloamide library was constructed by a parallel solution-phase synthetic route. The synthetic routes rely on amide formation with secondary amines and chloro-acid chlorides; SN2 reaction with sodium azide; and the selective [3 + 2] Hüisgen cycloaddition with appropriate terminal alkynes. The target secondary and tertiary 1,2,3-triazoloamide derivatives were obtained with three-diversity points in excellent overall yields and purities using the reported solid- and solution-phase synthetic routes, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332172 | PMC |
http://dx.doi.org/10.3390/molecules201119673 | DOI Listing |