Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Quality control (QC) analysis is an important component in maize breeding and seed systems. Genotyping by next-generation sequencing (GBS) is an emerging method of SNP genotyping, which is being increasingly adopted for discovery applications, but its suitability for QC analysis has not been explored. The objectives of our study were 1) to evaluate the level of genetic purity and identity among two to nine seed sources of 16 inbred lines using 191 Kompetitive Allele Specific PCR (KASP) and 257,268 GBS markers, and 2) compare the correlation between the KASP-based low and the GBS-based high marker density on QC analysis.

Results: Genetic purity within each seed source varied from 49 to 100% for KASP and from 74 to 100% for GBS. All except one of the inbred lines obtained from CIMMYT showed 98 to 100% homogeneity irrespective of the marker type. On the contrary, only 16 and 21% of the samples obtained from EIAR and partners showed ≥95% purity for KASP and GBS, respectively. The genetic distance among multiple sources of the same line designation varied from 0.000 to 0.295 for KASP and from 0.004 to 0.230 for GBS. Five lines from CIMMYT showed ≤ 0.05 distance among multiple sources of the same line designation; the remaining eleven inbred lines, including two from CIMMYT and nine from Ethiopia showed higher than expected genetic distances for two or more seed sources. The correlation between the 191 KASP and 257,268 GBS markers was 0.88 for purity and 0.93 for identity. A reduction in the number of GBS markers to 1,343 decreased the correlation coefficient only by 0.03.

Conclusions: Our results clearly showed high discrepancy both in genetic purity and identity by the origin of the seed sources (institutions) irrespective of the type of genotyping platform and number of markers used for analyses. Although there were some numerical differences between KASP and GBS, the overall conclusions reached from both methods was basically similar, which clearly suggests that smaller subset of preselected and high quality markers are sufficient for QC analysis that can easily be done using low marker density genotyping platforms, such as KASP. Results from this study would be highly relevant for plant breeders and seed system specialists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636831PMC
http://dx.doi.org/10.1186/s12864-015-2180-2DOI Listing

Publication Analysis

Top Keywords

genetic purity
12
seed sources
12
inbred lines
12
gbs markers
12
gbs
9
kompetitive allele
8
allele specific
8
specific pcr
8
kasp
8
pcr kasp
8

Similar Publications

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Ten novel pyrazoline-thiazole derivatives were synthesized and assessed for their potential as acetylcholinesterase and butyrylcholinesterase inhibitors. The structure of the target compounds was characterized by H NMR and C NMR, and purity was determined using HPLC. The in vitro enzyme inhibitory activity assays determined that compounds (IC = 0.

View Article and Find Full Text PDF

Current Therapeutic Strategies in Parkinson's Disease: Future Perspectives.

Mol Cells

September 2025

Department of Neuroscience, Kyung Hee University, Seoul, South Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, South Korea. Electronic address:

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein. Current treatments, including dopaminergic medications and deep brain stimulation (DBS), provide symptomatic relief but do not halt disease progression. Recent advances in molecular research have enabled the development of disease-modifying strategies targeting key pathogenic mechanisms, such as α-synuclein aggregation, mitochondrial dysfunction, and genetic mutations including LRRK2 and GBA1.

View Article and Find Full Text PDF

Background: Current neurovascular unit isolation requires processing brain microvascular endothelial cells (BMECs) and neurons from separate animals, preventing concurrent analysis of neurovascular crosstalk within identical genetic/physiological contexts.

New Methods: We developed an enzymatic digestion/bovine serum albumin density gradient technique that enables the simultaneous isolation of neural tissue and microvascular segments from individual mice. The neural tissue was filtered and centrifuged for primary cortical neuron culture on poly-L-lysine-coated plates.

View Article and Find Full Text PDF

Background: Telomere length (TL) is a valuable marker of aging and stress that reflects both genetic and environmental influences. Quantitative PCR (qPCR) TL measurement is a powerful and cost-effective assay, especially in population studies with limited quantities of source material. Nevertheless, collecting and transporting high-quality blood samples can be logistically challenging, and research suggests that several preanalytical and analytical factors can influence the reliability and precision of the qPCR assay.

View Article and Find Full Text PDF