98%
921
2 minutes
20
Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b02596 | DOI Listing |
Langmuir
September 2025
Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.
Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam.
Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu Province, China.. Electronic address:
The multi-component deep eutectic solvents (DES) have emerged as indispensable tools in the lignocellulosic pretreatment process, facilitating the efficient biotransformation of biomass sugars into valuable products. In this investigation, FeCl was ingeniously incorporated to amplify the pretreatment efficacy of a DES synthesized from cetyltrimethylammonium bromide (CTAB) and lactic acid (LA), specifically targeting poplar sawdust (PS). Remarkably, under the meticulously optimized molar ratio of 1: 4:1, this innovative ternary DES achieved an unprecedented removal of 68.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
Eutectogels have emerged as versatile materials for wearable electronics, optical sensors, and biomedical applications. This study introduced the first investigation of microenvironmental basicity in poly(vinyl alcohol)/choline chloride (PVA/ChCl) eutectogels using lumichrome as a fluorescent probe. The incorporation of ChCl was demonstrated to enhance the microbasicity of PVA films, as evidenced by the significant promotion of lumichrome deprotonation.
View Article and Find Full Text PDFSmall
September 2025
Department of Materials Science and Engineering, Ludong University, Yantai, 264025, China.
With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.
View Article and Find Full Text PDF