98%
921
2 minutes
20
Accurate gene expression analysis relies on the selection of a stable reference gene, as unstable reference genes can alter experimental results and conclusions. It is widely‑accepted that reference genes exhibit different expression levels in different types of tissues and cells. Therefore, it is essential to screen for stably‑expressed reference genes in the cells and tissues used for experimental analysis prior to performing reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In the present study, eight reference genes were screened for their suitability for RT‑qPCR in five T lymphocytes co‑cultured with mesenchymal stem cells from different sources. Using NormFinder, geNorm, and BestKeeper algorithms consistently demonstrated that RPL13A and B2M were the optimal reference genes for the normalization of RT‑qPCR data obtained from T lymphocytes, whereas glyceraldehyde 3‑phosphate dehydrogenase was not a suitable reference gene due to its extensive variability in expression. These findings highlight the importance of evaluating reference genes for RT‑qPCR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2015.4396 | DOI Listing |
Bioinformatics
September 2025
Department of Mathematical Sciences, The University of Texas at Dallas, TX United States.
Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFAPMIS
September 2025
Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
September 2025
Altasciences Preclinical Seattle, 6605 Merrill Creek Pkwy, Everett, Seattle, WA 98203, USA.
The Nanopig™ model is an emerging non-rodent platform for (bio)pharmaceutical safety assessment, with potential advantages for translational research. Here, we report initial characterization results using whole genome sequencing (WGS) and tissue-based proteomics, focusing on drug metabolism and immune system relevance. WGS produced a high-quality Nanopig™ genome assembly (2.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China.
EzBioCloud is one of the practical reference databases and analytical platforms for systematic microbiology research. The EzBioCloud database provides convenient services in this regard, especially for performing sequence analysis using the 16S rRNA genes. However, '.
View Article and Find Full Text PDF