Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b02511DOI Listing

Publication Analysis

Top Keywords

no2 dependence
8
dependence daytime
8
nitrous acid
8
acid hono
8
daytime hono
8
no2
6
hono
6
atmospheric constraint
4
constraint no2
4
daytime
4

Similar Publications

High-sensitivity, multiparameter sensing is increasingly critical for environmental monitoring and electronics. Existing sensing platforms struggle to integrate precise, rapid, and stable monitoring of parts per billion-level hazardous gases and temperature within a single miniaturized device. This study developed a novel sensor based on two-dimensional (2D) indium selenide (InSe), complemented by first-principles density functional theory calculations elucidating the layer-dependent NO adsorption mechanism.

View Article and Find Full Text PDF

The association between intrinsic capacity and functional ability in older adults - exploring the role of the physical environment.

Arch Gerontol Geriatr

August 2025

Aging and Later Life, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam, the Netherlands. Electronic address:

Background: Ageing in place has been promoted in the Netherlands to encourage optimal functional ability (FA) and independent living among older adults. FA is likely dependent on intrinsic capacity (IC), a composite measure of an individual's mental and physical capacities-and its interaction with the physical environment in which people live. This study aimed to examine the association between IC and FA, as well as to explore how the physical environment may modify this relationship in older adults.

View Article and Find Full Text PDF

Unsymmetrical dimethylhydrazine (UDMH) is a widely used hypergolic rocket fuel. It is one of the most commonly used fuels for attitude control engines, such as those in missiles, satellites, spacecraft, and launch vehicles. We conducted a high-level theoretical study to develop a detailed combustion kinetic mechanism for UDMH, focusing on crucial elementary reactions.

View Article and Find Full Text PDF

Cyanine-scaffold fluorogenic probes for visual detection of nitroreductase in living bacteria.

J Mater Chem B

September 2025

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Key Laboratory of Metabolic Halth, Shenzhen Metabolism and Reproductive Targeted Delivery Proof-of-Concept Center, Shenzhen Engineering Laboratory of Nano

Bacterial infections pose significant challenges in clinical diagnostics and microbiological research due to the need for rapid, sensitive, and specific detection methods. Herein, we report the development of Cy5-NO2, a novel nitro-containing fluorescent probe designed for real-time monitoring of bacterial nitroreductase (NTR) activity. Cy5-NO2 is synthesized through a streamlined, high-yield process without chromatography, yielding a stable compound confirmed by X-ray crystallography and spectroscopic methods.

View Article and Find Full Text PDF

In this study, the influence of various substituents on the fluorescence properties and excited-state intramolecular proton transfer (ESIPT) process of 2-hydroxy-3-phenyliminomethyl-10-butyl phenothiazine (Ph) were systematically investigated using density-functional theory (DFT) and time-dependent density-functional theory (TD-DFT). Five Ph derivatives were strategically designed by incorporating two electron-donating groups (NH, MeO) and three electron-withdrawing groups (CN, CHO, NO). Analysis the structural parameters and IR spectra revealed that the intramolecular hydrogen bonding in Ph and its derivatives was enhanced in the S state.

View Article and Find Full Text PDF