Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O2.

ACS Appl Mater Interfaces

Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Harbin 150080, People's Republic of China.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Efficient photocatalysis for degrading environmental organic pollutants on semiconductors requires photogenerated charge carrier separation to drive the photochemical processes. To ensure charge separation, it is indispensable to make charges captured effectively. Generally, the step for capturing the photogenerated electrons by the surface adsorbed O2 is relatively slow as compared to that for capturing holes by the surface adsorbed hydroxyl groups so that it is taken as the rate-determining step. However, it is frequently neglected. Thus, it is greatly desired to develop feasible strategies to promote the adsorption of O2 for efficient photocatalysts. In this paper, we have mainly discussed surface modification with inorganic acids, such as H3PO4, HF, and H3BO3, to enhance photogenerated charge carrier separation based on oxygen adsorption promotion for photocatalytic degradation of environmental pollutants. Among these acids, the function and mechanism of H3PO4 are highlighted because of its good performance and universality. Several important photocatalyst systems, mainly including TiO2, α-Fe2O3, and g-C3N4, along with the nanostructured carbons as electron acceptors in nanocomposites, are addressed to improve the ability to adsorb O2. A key consideration in this review is the development of a strategy for the promotion of adsorbed O2 for efficient photocatalysts, along with the process mechanisms by revealing the relationships among the adsorbed O2, photogenerated charge carrier separation, and photocatalytic performance. Interestingly, it is suggested that the enrichment in surface acidity be favorable for promotion of O2 adsorption, leading to the improved charge carrier separation and then to the enhanced photoactivities of various semiconductor photocatalysts. Moreover, several outlooks are put forward.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b04267DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
carrier separation
16
efficient photocatalysts
12
photogenerated charge
12
inorganic acids
8
adsorption efficient
8
surface adsorbed
8
charge
5
separation
5
modification strategies
4

Similar Publications

Organic mixed ionic-electronic conducting polymers remain at the forefront of materials development for bioelectronic device applications. During electrochemical operation, structural dynamics and variations in electrostatic interactions in the polymer occur, which affect dual transport of the ions and electronic charge carriers. Such effects remain unclear due to a lack of spectroscopic methods capable of capturing these dynamics, which hinders the rational design of higher-performance polymers.

View Article and Find Full Text PDF

Densification-Related Optical and Photodetection Properties of Green-Synthesized MAPbI and MAPbI@Graphite Powders.

ACS Omega

September 2025

Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR-7515 CNRS-Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.

For photodetection applications using 3D hybrid perovskites (HPs), dense and thick films or compacted powders in wafer form are needed and generally require large amounts of HPs. HPs are also often combined with a graphene/carbon layer to improve their conductivity. Among HP synthesis methods, mechanosynthesis, a green synthesis method, provides a large amount of powders, which are furthermore easily densified in compact wafers due to their mechanical activation.

View Article and Find Full Text PDF

Nanoscale materials are attracting a great deal of attention due to their exceptional properties, making them indispensable for many advanced applications. Among these materials, spinel ferrites stand out for their potential applications in electronic, optoelectronic, energy storage and other devices. This is why the development of a synthesis process combined with rigorous optimization of annealing conditions is provided to be an essential approach to control nanoparticle formation and fine-tuning their structural, morphological and functional characteristics.

View Article and Find Full Text PDF

This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.

View Article and Find Full Text PDF

Aluminum-doped copper indium gallium selenide/sulfide (CIGAS) is a favorable absorber material for solar cell applications; however, the number of reports on CIGAS solar cells currently remains limited. In this study, we therefore employed SCAPS-1D software for the theoretical modeling of CIGAS thin film solar cells and investigated the effect of material properties and device configurations on solar cell photovoltaic (PV) parameters. Initially, key parameters such as thickness and charge carrier concentrations of each layer used in CIGAS PV devices were studied and optimized to obtain suitable conditions for high device performance.

View Article and Find Full Text PDF