98%
921
2 minutes
20
Mathematical modelling provides an effective way to challenge conventional wisdom about parasite evolution and investigate why parasites 'do what they do' within the host. Models can reveal when intuition cannot explain observed patterns, when more complicated biology must be considered, and when experimental and statistical methods are likely to mislead. We describe how models of within-host infection dynamics can refine experimental design, and focus on the case study of malaria to highlight how integration between models and data can guide understanding of parasite fitness in three areas: (1) the adaptive significance of chronic infections; (2) the potential for tradeoffs between virulence and transmission; and (3) the implications of within-vector dynamics. We emphasize that models are often useful when they highlight unexpected patterns in parasite evolution, revealing instead why intuition yields the wrong answer and what combination of theory and data are needed to advance understanding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877521 | PMC |
http://dx.doi.org/10.1017/S0031182015000815 | DOI Listing |
The genus Flapocephalus Deshmukh, 1979, is a little-known group of lecanicephalidean cestodes parasitizing cowtail rays (genus Pastinachus Rüppell) mainly in the Indo-Pacific region. Since the erection of the genus, with Flapocephalus trygonis Deshmukh, 1979, as the type species, and the description of a second species, Flapocephalus saurashtri Shinde and Deshmukh, 1979, both from Pastinachus sephen (Fabricius) from India, reports of this genus have been restricted mainly to brief mentions or discussion of its validity and taxonomic placement. More recently, phylogenetic analyses based on molecular sequence data that included specimens of Flapocephalus have supported Flapocephalus as a distinct genus allied with the Polypocephalidae Meggitt, 1924.
View Article and Find Full Text PDFAnnu Rev Entomol
September 2025
2Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; email:
Parasitoid wasps are a diverse group of insects with a unique parasitic lifestyle that allows them to spend their lives closely interacting with their insect hosts, facilitated by parasitic effectors, including venom, polydnaviruses, and teratocytes. These effectors manipulate various aspects of insect host biology to increase the survival of the parasitoids' offspring. During the last two decades, omics and functional studies have significantly advanced our understanding of how parasitoids manipulate their hosts at the molecular level.
View Article and Find Full Text PDFMicrob Genom
September 2025
School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia 5371, Australia.
causes otitis media and severe diseases including pneumonia, meningitis and bacteraemia. The rise of antimicrobial resistance (AMR) in , facilitated by mobile genetic elements (MGEs), complicates infection treatment. While pneumococcal conjugate vaccine (PCV) deployment has reduced disease burden, non-vaccine serotypes (NVTs) have increased and now cause invasive disease.
View Article and Find Full Text PDFOecologia
September 2025
Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
Beech leaf disease (BLD) poses a serious threat to the health of beech forests throughout the northeastern USA and Canada. Caused by invasive nematodes, BLD first appeared in 2012 in Ohio and has rapidly spread eastward. We investigated the effects of BLD on leaf and litter chemistry and leaf litter decomposition rate from four infected beech stands in Falmouth, Massachusetts.
View Article and Find Full Text PDFParasite
September 2025
Parasitology Department, São Paulo University, 1374 Av. Prof. Lineu Prestes, São Paulo, State of São Paulo 05508-000, Brazil.
Understanding why Diptera, such as mosquitoes and sand flies, feed on humans is crucial in defining them as vectors of diseases such as malaria, dengue fever, Zika virus, and leishmaniasis. Determining their attraction to humans (anthropophily) helps in assessing the risk of disease transmission, designing effective vector control strategies, and monitoring the effectiveness of existing control measures. An important question is whether they are specifically attracted to humans in preference to other mammals or whether there is something else at play.
View Article and Find Full Text PDF