Assessment of future variability in extreme precipitation and the potential effects on the wadi flow regime.

Environ Monit Assess

Civil Aviation and Meteorology, Meteorology Department, Salalah Airport, Salalah, Oman.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of this study is to investigate how the magnitude and occurrence of extreme precipitation events are affected by climate change and to predict the subsequent impacts on the wadi flow regime in the Al-Khod catchment area, Muscat, Oman. The tank model, a lumped-parameter rainfall-runoff model, was used to simulate the wadi flow. Precipitation extremes and their potential future changes were predicted using six-member ensembles of general circulation models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Yearly maxima of the daily precipitation and wadi flow for varying return periods were compared for observed and projected data by fitting the generalized extreme value (GEV) distribution function. Flow duration curves (FDC) were developed and compared for the observed and projected wadi flows. The results indicate that extreme precipitation events consistently increase by the middle of the twenty-first century for all return periods (49-52%), but changes may become more profound by the end of the twenty-first century (81-101%). Consequently, the relative change in extreme wadi flow is greater than twofolds for all of the return periods in the late twenty-first century compared to the relative changes that occur in the mid-century period. Precipitation analysis further suggests that greater than 50% of the precipitation may be associated with extreme events in the future. The FDC analysis reveals that changes in low-to-moderate flows (Q60-Q90) may not be statistically significant, whereas increases in high flows (Q5) are statistically robust (20 and 25% for the mid- and late-century periods, respectively).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-015-4851-5DOI Listing

Publication Analysis

Top Keywords

wadi flow
20
extreme precipitation
12
return periods
12
twenty-first century
12
flow regime
8
precipitation events
8
compared observed
8
observed projected
8
precipitation
7
extreme
6

Similar Publications

Precision power quality control in grid-integrated microgrid via matrix pencil technique.

Sci Rep

February 2025

Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, 11991, Al-Kharj, Saudi Arabia.

This manuscript presents a Matrix Pencil-based Energy Management Control (MPEMC) approach to improve power quality (PQ) and power flow in grid-integrated solar PV systems. The proposed method combines a non-linear dynamic load-based shunt active power filter (SAPF) model with an incremental conductance-based optimal power tracking control (OPTC) algorithm, enhancing PV system efficiency by 4%, increasing output from 96 kW to 100 kW under varying solar irradiance. A logarithmic encoder-based DC-link voltage controller stabilizes the DC-link voltage with an error reduction time of less than 0.

View Article and Find Full Text PDF

This article proposes a finite set model predictive control (FS-MPC) strategy for a three-phase, two-stage photovoltaic (PV) and battery-based hybrid microgrid (HMG) system. The system incorporates parallel inverters with dual DC-link capacitors connected to a shared DC grid, enabling enhanced reliability and efficient power-sharing. A discrete-time HMG model is developed to predict key system parameters such as grid, circulating, and offset currents.

View Article and Find Full Text PDF

As one of their key regulatory ecosystem functions, inland lakes serve as CO sinks. The CO sink capacity of inland lakes depends on their water temperature and salinity as well as their water volume which are all highly sensitive to climate conditions. This paper aims to quantitatively estimate the change in the CO sink capacity of Wadi El-Rayan Lakes under climate change scenarios.

View Article and Find Full Text PDF

The three-dimensional (3D) MHD mixed convection mode confined 3D wavy trapezoidal enclosure is examined. The bottom plane of the trapezoidal system is irregular, particularly a wavy plane with various undulation numbers [Formula: see text]. The forced convection phenomenon arises due to the displacement of the top region plane, whereas the porosity-enthalpy methodology characterizes the progression of charging.

View Article and Find Full Text PDF