Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a novel method of synthesizing rutile TiO2 nanocrystals at low temperature (200 degrees C) via a butanol rinsing process followed by heat treatment in an O2 atmosphere. The rutile nanocrystals show uniform size distribution of approximately 20 nm and good crystallinity confirmed by X-ray diffraction and transmission electron microscopy. A mechanism for the low temperature synthesis of rutile nanocrystals is rationalized in terms of an explosive thermal decomposition reaction of butoxy groups on TiO2 powders with O2 gas. Characterizations of the photovoltaic and photocatalytic properties of rutile nanocrystals exhibited higher photoactivity than large-sized conventional rutile powder, which demonstrates that this novel synthesis technology could expand applications of rutile powders to various photoactive devices beyond solar cells and photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.9778DOI Listing

Publication Analysis

Top Keywords

low temperature
12
rutile nanocrystals
12
temperature synthesis
8
synthesis rutile
8
rutile tio2
8
tio2 nanocrystals
8
photovoltaic photocatalytic
8
photocatalytic properties
8
rutile
7
nanocrystals
5

Similar Publications

Pathogenic characteristics of Causing Black Root Rot of Carrot.

Plant Dis

September 2025

Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.

The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF

The theoretical maximum critical temperature (T) for conventional superconductors at ambient pressure remains a fundamental question in condensed matter physics. Through analysis of electron-phonon calculations for over 20,000 metals, we critically examine this question. We find that while hydride metals can exhibit maximum phonon frequencies of more than 5000 K, the crucial logarithmic average frequency rarely exceeds 1800 K.

View Article and Find Full Text PDF

Scalable Photothermal Superhydrophobic Deicing Coating with Mechanochemical-Thermal Robustness.

ACS Appl Mater Interfaces

September 2025

Department of Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Developing scalable and robust deicing coatings is essential for real-world applications, yet current coatings either suffer from intrinsic fragility or low thermal conductivity, limiting sustainability and deicing effectiveness. Here, we report a scalable and durable photothermal superhydrophobic coating coupling with enhanced thermal conductivity, engineered by embedding carbon nanotubes within a perfluoroalkoxy polymer matrix. Our design achieved 97.

View Article and Find Full Text PDF

Ambient temperature and coronary plaque rupture risk in STEMI: Insights from OCT analysis.

Atherosclerosis

September 2025

Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, China. Electronic address

Background And Aims: Cold weather is associated with an increased risk of cardiovascular events, but its impact on culprit plaque characteristics in ST-segment elevation myocardial infarction (STEMI) remains unclear.

Methods: This study included 647 STEMI patients who underwent optical coherence tomography (OCT) to assess untreated culprit lesions. Participants were grouped based on ambient temperature on the day of admission or mean ambient temperatures over the preceding 7-, 14-, 21-, and 28-day periods.

View Article and Find Full Text PDF