Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We demonstrate a significant resolution enhancement beyond the conventional limit in multiphoton microscopy (MPM) using saturated excitation of fluorescence. Our technique achieves super-resolved imaging by temporally modulating the excitation laser-intensity and demodulating the higher harmonics from the saturated fluorescence signal. The improvement of the lateral and axial resolutions is measured on a sample of fluorescent microspheres. While the third harmonic already provides an enhanced resolution, we show that a further improvement can be obtained with an appropriate linear combination of the demodulated harmonics. Finally, we present in vitro imaging of fluorescent microspheres incorporated in HeLa cells to show that this technique performs well in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.23.022667DOI Listing

Publication Analysis

Top Keywords

multiphoton microscopy
8
fluorescent microspheres
8
super-resolved vitro
4
vitro multiphoton
4
microscopy saturation
4
saturation excitation
4
excitation demonstrate
4
demonstrate resolution
4
resolution enhancement
4
enhancement conventional
4

Similar Publications

Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.

View Article and Find Full Text PDF

Three-dimensional quantitative evaluation of hypertension-induced aortic fibre remodelling based on multiphoton microscopy: a cross-age perspective.

R Soc Open Sci

September 2025

Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of Chin

Hypertension is the primary cause of cardiovascular diseases, and its worldwide prevalence has continued to increase recently. Aortic fibre remodelling is critical in the development of hypertension and is strikingly age-related. However, the underlying microlevel variations remain unknown.

View Article and Find Full Text PDF

Calcium Oscillations Within Juxtaglomerular Cell Clusters Control Renin Release.

Circ Res

September 2025

Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville. (H.Y., M.Y., D.M., F.X., J.P.S., S.C., L.F.A., S.M., R.A.G., M.L.S.S.-L.).

Background: Juxtaglomerular cells are sensors that control blood pressure and fluid-electrolyte homeostasis. They are arranged as clusters at the tip of each afferent arteriole. In response to decreased blood pressure or extracellular fluid volume, juxtaglomerular cells secrete renin, initiating an enzymatic cascade that culminates in the production of Ang II (angiotensin II), a potent vasoconstrictor that restores blood pressure and fluid-electrolyte homeostasis.

View Article and Find Full Text PDF

Purpose: Hirschsprung's disease (HSCR) is an intestinal disorder characterized by the absence of nerve cells in parts of the intestinal tract. The definitive diagnosis is confirmed by a full-thickness rectal biopsy to verify the absence of ganglion cells. However, incomplete removal often causes post-operative complications.

View Article and Find Full Text PDF

Endocytosis is a critical cellular process involved in many physiological functions, including mechanotransduction. Recent advancements in intravital imaging have led to in vivo analysis of endocytosis, and these tools can now be translated to study the highly mechanosensitive bone tissue. Here, we present a live-cell study of endocytosis in osteocytes, mechanosensory cells embedded in mouse bone.

View Article and Find Full Text PDF