Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2457337DOI Listing

Publication Analysis

Top Keywords

plant species
24
visual tree
16
tree classifiers
12
large-scale plant
12
species identification
12
multi-task structural
12
structural learning
12
learning algorithm
12
classifiers large-scale
8
hierarchical multi-task
8

Similar Publications

The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.

View Article and Find Full Text PDF

Coffee plants and beans are prone to fungal contamination that pose health risks to consumers by producing mycotoxins like ochratoxin A (OTA). Thus, the present study aimed to analyze the mycobiota of Costa Rican coffee beans, focusing on potentially ochratoxigenic species and their in vitro susceptibility patterns to antifungal agents. Fungal isolates were obtained from cherry, green, and roasted coffee beans from Costa Rica; they were identified by morphology, MALDI-TOF technology, and sequencing.

View Article and Find Full Text PDF

Nutritional Symbiosis Between Ants and Their Symbiotic Microbes.

Annu Rev Entomol

September 2025

2Department of Entomology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA; email:

Nutritional symbioses with microorganisms have profoundly shaped the evolutionary success of ants, enabling them to overcome dietary limitations and thrive across diverse ecological niches and trophic levels. These interactions are particularly crucial for ants with specialized diets, where microbial symbionts compensate for dietary imbalances by contributing to nitrogen metabolism, vitamin supplementation, and the catabolism of plant fibers and proteins. This review synthesizes recent advances in our understanding of ant-microbe symbioses, focusing on diversity, functional roles in host nutrition, and mechanisms of transmission of symbiotic microorganisms.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Progestogens and androgens influence root morphology of angiosperms in a brassinosteroid-independent manner.

Plant J

September 2025

Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany.

Progestogens and androgens are steroids found in a wide range of plants, but little is known about their physiological functions. In this study, we sowed seeds of angiosperms on progestogen- and androgen-containing medium and analysed their morphological effects. We further investigated the effects of progesterone and testosterone on brassinosteroid profiles and gene expression in A.

View Article and Find Full Text PDF