Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

p53 protein is a prominent tumor suppressor to induce cell cycle arrest, apoptosis and senescence, which attracts significant interest to cancer treatment. Therefore, it would be particularly important to restore the wild-type p53 that retains latent functions in the approximately 50% of tumors. MDM2 (murine double minute 2), the principal cellular antagonist of p53, has long been believed to suppress p53 activity through two main mechanisms: promoting degradation via its E3 ligase activity and masking p53 transcriptional activation by direct binding. Targeting MDM2 E3 ligase activity is becoming a potential antitumor strategy resulting from MDM2's decisive role in controlling the fate of p53: p53 is going to degradation when entrapped into MDM2-mediated ubiquitination, where p53 can escape by abrogating MDM2 E3 ligase activity using regulators. The intensive focus on regulating MDM2 ubiquitin E3 ligase activity has led to the rapid progress of its inhibitors, which may be possible to help p53 escape from degradation and restore its function to control tumor growth. This review summarizes the current inhibitors of MDM2 E3 ligase in cancer therapy based on the understanding the regulation of MDM2 E3 ubiquitin ligase activity, including post-translational modification, interactions between MDM2 and its cofactors, and regulation of MDM2 stability.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520615666150907093358DOI Listing

Publication Analysis

Top Keywords

ligase activity
20
mdm2 ligase
12
p53
10
fate p53
8
mdm2-mediated ubiquitination
8
ubiquitination p53
8
mdm2
8
p53 escape
8
mdm2 ubiquitin
8
ubiquitin ligase
8

Similar Publications

Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12.

Cell Rep

September 2025

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berk

Centered on the transcription factor NRF2 and its E3 ligase CUL3, the oxidative stress response protects cells from damage by reactive oxygen species (ROS). Increasing ROS inhibits CUL3 to stabilize NRF2 and elicit antioxidant gene expression, while cells recovering from stress rapidly turn over NRF2 again to prevent reductive stress and oxeiptosis-dependent death. How cells reinitiate NRF2 degradation after ROS have been cleared remains poorly understood.

View Article and Find Full Text PDF

Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.

View Article and Find Full Text PDF

, a causative agent of lymphatic filariasis, relies on its endosymbiont for survival. MurE ligase, a key enzyme in peptidoglycan biosynthesis, serves as a promising drug target for anti-filarial therapy. In this study, we employed a hierarchical virtual screening pipeline to identify phytochemical inhibitors targeting the MurE enzyme of the endosymbiont of (MurE).

View Article and Find Full Text PDF

Upon DNA virus infection, cGAS senses viral DNA and triggers MITA (also called STING)-dependent induction of type I interferons (IFN-Is) and other cytokines/chemokines. IFN-Is further activate STAT1/2 to induce interferon-stimulated genes (ISGs) and the innate antiviral response. How the innate antiviral response is silenced in uninfected cells and efficiently mounts upon viral infection is not fully understood.

View Article and Find Full Text PDF

Astaxanthin attenuates AFB1-induced hepatotoxicity by activating Nrf2 and inhibiting the NF-κB signaling pathway.

Ecotoxicol Environ Saf

September 2025

Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Guangdong 524088, China. Electronic address:

Aflatoxin B1 (AFB1)-induced hepatotoxicity is a common toxic disease in poultry farming. However, there is currently a lack of effective pharmaceutical interventions for treating AFB1. Astaxanthin (AST), a natural carotenoid, exhibits potent antioxidant and immune-enhancing properties.

View Article and Find Full Text PDF