98%
921
2 minutes
20
Purpose Of Review: The aim of this review is to highlight the recent advances (in the past 12 months) concerning circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in oncology.
Recent Findings: The value of CTCs as a prognostic biomarker is now well validated in breast, colon, and prostate cancer, but no trial has yet demonstrated that modifying treatment according to CTCs is superior to standard of care. Ongoing trials are addressing the clinical utility of CTCs. Moreover, there is emerging evidence about the potential of CTCs as a tumor tissue source to analyze protein and RNA expression, DNA mutations and drug sensitivity. ctDNA is a specific biomarker associated with tumor burden, and small studies have shown an association with worse outcome; prospective clinical studies on the prognostic and predictive value of ctDNA are needed. ctDNA can be used for tumor molecular profiling, with the potential advantage to encompass the spectrum of mutations present in the tumor.
Summary: CTCs and ctDNA are promising new biomarkers in oncology, with potential clinical applications for monitoring and for comprehensive molecular profiling of cancer. For each assay, demonstration of analytical and clinical validity, as well as clinical utility in prospective clinical trials is needed before implementation in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CCO.0000000000000223 | DOI Listing |
J Cachexia Sarcopenia Muscle
October 2025
Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
Background: Body composition alterations such as skeletal muscle (SM) loss in cancer patients are associated with poor survival. In turn, immune cell-driven pathways have been linked to muscle wasting. We aimed to investigate the relationship between body composition, tumour-infiltrating lymphocytes and survival in patients with advanced lung cancer.
View Article and Find Full Text PDFNature
September 2025
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.
View Article and Find Full Text PDFBiomater Adv
September 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2025
Hôpital Avicenne, Medical-Surgical Intensive Care Unit, Bobigny, Île-de-France, France;
Am J Physiol Cell Physiol
September 2025
Division of Medical Sciences, NOSM University, Ontario, Canada.
Cancer induced skeletal muscle wasting (cachexia) is responsible for over 20% of cancer related deaths, yet much about the pathophysiology of the condition remains unknown. Importantly, cancer cachexia does not seem wholly responsive to traditional anabolic stimuli such as nutritional interventions. It is possible that tumours directly or indirectly target skeletal muscle for their dynamic and abundant pool of amino acids that can be reliably used by tumours to supplement energy production and biomass synthesis.
View Article and Find Full Text PDF