98%
921
2 minutes
20
Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The circadian thermo-energetics (CTE) hypothesis predicts that diurnal activity patterns reduce daily energy expenditure (DEE) compared with nocturnal activity patterns. Here, we tested the CTE hypothesis by quantifying the energetic consequences of relevant environmental factors in mice. Under natural conditions, diurnality reduces DEE by 6-10% in energetically challenged mice. Combined with night-time torpor, as observed in mice under prolonged food scarcity, DEE can be reduced by ∼20%. The dominant factor determining the energetic benefit of diurnality is thermal buffering provided by a sheltered resting location. Compared with nocturnal animals, diurnal animals encounter higher ambient temperatures during both day and night, leading to reduced thermogenesis costs in temperate climates. Analysis of weather station data shows that diurnality is energetically beneficial on almost all days of the year in a temperate climate region. Furthermore, diurnality provides energetic benefits at all investigated geographical locations on European longitudinal and latitudinal transects. The reduction of DEE by diurnality provides an ultimate explanation for temporal niche switching observed in typically nocturnal small mammals under energetically challenging conditions. Diurnality allows mammals to compensate for reductions in food availability and temperature as it reduces energetic needs. The optimal circadian organization of an animal ultimately depends on the balance between energetic consequences and other fitness consequences of the selected temporal niche.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.119354 | DOI Listing |
PNAS Nexus
September 2025
Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), Montpellier 34095, France.
Active-matter systems are inherently out-of-equilibrium and perform mechanical work by utilizing their internal energy sources. Breakdown of time-reversal symmetry (BTRS) is a hallmark of such dissipative nonequilibrium dynamics. We introduce a robust, experimentally accessible, noninvasive, quantitative measure of BTRS in terms of the Kullback-Leibler divergence in collision events, demonstrated in our novel artificial active matter, comprised of battery-powered spherical rolling robots whose energetics in different modes of motion can be measured with high precision.
View Article and Find Full Text PDFBiophys J
September 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:
The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that plays an important role in metabolic regulation, and consequently is a target for type 2 diabetes and obesity therapeutics. Although cholesterol has been reported to be implicated in receptor activation, its interactions with the receptor during the activation cycle have not been probed. Using coarse-grained molecular dynamics simulations, we have characterized the cholesterol interactions with GLP-1R in four conformational states: the inactive, partially active, GLP-1-bound active, and exenatide-bound active conformational states.
View Article and Find Full Text PDFObjectives: Vitamin B12 plays a vital role in folate-mediated one-carbon metabolism (FOCM), a series of one-carbon transfer reactions that generate nucleotides (thymidylate (dTMP) and purines) and methionine. Inadequate levels of B12 impair FOCM, depressing de novo thymidylate (dTMP) synthesis, which in turn leads to uracil accumulation in DNA. This phenomenon has been well documented in nuclear DNA.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
September 2025
Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
Finding a way to relax is increasingly difficult in our overstimulating, modern society. Chronic stress can have severe psychological and physiological consequences. Music is a promising tool to promote relaxation by lowering heart rate, modulating mood and thoughts, and providing a sense of safety.
View Article and Find Full Text PDFOxygen exchange on mixed conducting oxide surfaces and how to modulate its kinetics has been in the focus of research for decades. Recent studies have shown that surface modifications can be used to tune the high temperature oxygen exchange kinetics of a single material systematically over several orders of magnitude, shifting the focus of research from bulk descriptors to a material's outermost surface. Herein, we aim to unify bulk and surface perspectives and derive general design principles for fast oxygen exchange based on three fundamental material properties: oxide reducibility, adsorption energetics, and surface acidity.
View Article and Find Full Text PDF