Design of Thiol- and Light-sensitive Degradable Hydrogels using Michael-type Addition Reactions.

Polym Chem

Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA ; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.

Published: August 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Injectable depots that respond to exogenous and endogenous stimuli present an attractive strategy for tunable, patient-specific drug delivery. Here, the design of injectable and multimodal degradable hydrogels that respond to externally applied light and physiological stimuli, specifically aqueous and reducing microenvironments, is reported. Rapid hydrogel formation was achieved using a thiol-maleimide click reaction between multifunctional poly(ethylene glycol) macromers. Hydrogel degradation kinetics in response to externally applied cytocompatible light, reducing conditions, and hydrolysis were characterized, and degradation of the gel was controlled over multiple time scales from seconds to days. Further, tailored release of an encapsulated model cargo, fluorescent nanobeads, was demonstrated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536978PMC
http://dx.doi.org/10.1039/C5PY00750JDOI Listing

Publication Analysis

Top Keywords

degradable hydrogels
8
externally applied
8
design thiol-
4
thiol- light-sensitive
4
light-sensitive degradable
4
hydrogels michael-type
4
michael-type addition
4
addition reactions
4
reactions injectable
4
injectable depots
4

Similar Publications

Drug delivery to the central nervous system (CNS) is primarily hindered by the blood-brain barrier (BBB). To address this, mucoadhesive formulations have been designed to prolong residence time at the application site. In this study, we comprehensively characterized the physicochemical and mucoadhesive properties of hyaluronic acid tyramine (HATA) photocrosslinked hydrogels using rheological methods, nanoindentation, contact angle goniometry, and advanced confocal microscopy.

View Article and Find Full Text PDF

In situ articular cartilage (AC) regeneration is a meticulously coordinated process. Microfracture has been the most extensive clinical approach in AC repair, but it faces challenges such as matrix degradation, generation, and remodeling within a local inflammatory microenvironment. So far, it remains a challenge to establish a multistage regulatory framework for coordinating these cellular events, particularly the immune response and chondrocyte proliferation in microfracture-mediated AC repair microenvironments, which is crucial for promoting AC regeneration quality.

View Article and Find Full Text PDF

Abnormal levels of trypsin in the human body can lead to various diseases, yet conventional detection methods often lack operational simplicity and real-time readout capabilities. This work presents a state-of-the-art metal organic framework (MOF) nanozyme-integrated liquid crystal (LC) sensor (MHN-LC sensor) and demonstrates the detection of trypsin as a proof of the concept. By rational engineering of the MOF-808 framework with Al and l-histidine coordination, a novel MOF nanozyme (MHis-NE) exhibiting exceptional acetylcholinesterase (AChE)-mimetic activity is successfully prepared.

View Article and Find Full Text PDF

Microenvironment-Programmed siRNA-Based Hydrogel for Spatiotemporal Gene Silencing in Wound Healing.

Adv Mater

September 2025

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Excessive inflammation and overexpressed matrix metalloproteinases (MMPs) are significant factors in the prolonged healing of chronic diabetic wounds. Here, a precise gene therapy strategy is proposed utilizing siRNA and employing intelligent responsive materials for controlled release to mechanistically intervene in the pathological process of chronic non-healing wounds. The system employs a cationic hyperbranched aminoglycoside with disulfide bonds (SS-HPT) as its core delivery mechanism.

View Article and Find Full Text PDF

Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).

View Article and Find Full Text PDF