98%
921
2 minutes
20
Despite considerable research into the environmental risks and biological effects of exposure to external beam γ rays, incorporation of radionuclides has largely been understudied. This dosimetry and exposure risk assessment is challenging for first responders in the field during a nuclear or radiological event. Therefore, we have developed a workflow for assessing injury responses in easily obtainable biofluids, such as urine and serum, as the result of exposure to internal emitters cesium-137 ((137)Cs) and strontium-90 ((90)Sr) in mice. Here we report on the results of the untargeted lipidomic profiling of serum from mice exposed to (90)Sr. We also compared these results to those from previously published (137)Cs exposure to determine any differences in cellular responses based on exposure type. The results of this study conclude that there is a gross increase in the serum abundance of triacylglycerides and cholesterol esters, while phostaphatidylcholines and lysophosphatidylcholines displayed decreases in their serum levels postexposure at study days 4, 7, 9, 25, and 30, with corresponding average cumulative skeleton doses ranging from 1.2 ± 0.1 to 5.2 ± 0.73 Gy. The results show significant perturbations in serum lipidome as early as 2 days postexposure persisting until the end of the study (day 30).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327919 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.5b00576 | DOI Listing |
Biomed Environ Sci
August 2025
Department of Epidemiology, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China;Taixing Second People's Hospital, Suzhou Medical College of Soochow University, Taizhou 225400, Jiangsu, China.
Objective: Lipid oxidation is involved in the pathogenesis of atherosclerosis and may be contribute to the development of Ischemic stroke (IS). However, the lipid profiles associated with IS have been poorly studied. We conducted a pilot study to identify potential IS-related lipid molecules and pathways using lipidomic profiling.
View Article and Find Full Text PDFBackground: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.
Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.
Plant J
September 2025
Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China. Electronic address:
Goat milk is prized for its nutritional value, but the illegal addition of δ-decanolactone to enhance flavor poses risks to product integrity and safety. This study employed a tripartite multi-omics framework integrating metabolomics, lipidomics, and proteomics, combined with FTIR and CLSM to systematically elucidate the multifaceted effects of δ-decanolactone on goat milk. Chemometric and bioinformatic pipelines identified dysregulated molecules and pathways, while molecular docking validated interactions with key targets.
View Article and Find Full Text PDFCardiovasc Diabetol
September 2025
Computational Biomedicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.
View Article and Find Full Text PDF