98%
921
2 minutes
20
Research on nutrient controls of planktonic productivity tends to focus on a few standard fractions of inorganic or total nitrogen (N) and phosphorus (P). However, there is a wide range in the degree to which land-derived dissolved organic nutrients can be assimilated by biota. Thus, in systems where such fractions form a majority of the macronutrient resource pool, including many boreal inland waters and estuaries, our understanding of bacterio- and phytoplankton production dynamics remains limited. To adequately predict aquatic productivity in a changing environment, improved standard methods are needed for determining the sizes of active (bioavailable) pools of N, P and organic carbon (C). A synthesis of current knowledge suggests that variation in the C:N:P stoichiometry of bioavailable resources is associated with diverse processes that differentially influence the individual elements across space and time. Due to a generally increasing organic nutrient bioavailability from C to N to P, we hypothesize that the C:N and N:P of bulk resources often vastly overestimates the corresponding ratios of bioavailable resources. It is further proposed that basal planktonic production is regulated by variation in the source, magnitude and timing of terrestrial runoff, through processes that have so far been poorly described.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515874 | PMC |
http://dx.doi.org/10.1093/plankt/fbv018 | DOI Listing |
Mar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Public Health Sciences, University of Texas at El Paso, 211 Kelly Hall, 500 W University, El Paso, TX 79902, USA. Electronic address:
The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).
View Article and Find Full Text PDFCNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFFood Funct
September 2025
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
Ergothioneine (EGT) is a naturally occurring thiol-containing amino acid derivative synthesized by certain fungi and bacteria, with humans acquiring it exclusively through dietary intake. It has gained increasing attention due to its exceptional antioxidant, cytoprotective, and metal-chelating properties. EGT shows high stability under physiological conditions and can accumulate in specific tissues the highly selective transporter OCTN1.
View Article and Find Full Text PDF