98%
921
2 minutes
20
Understanding how behavior emerges from brain electrical activity is one of the ultimate goals of neuroscience. To achieve this goal we require methods for large-scale recording of the electrical activity of specific neuronal circuits. A very promising approach is to use optical reporting of membrane voltage transients, particularly if the voltage reporter is genetically targeted to specific neuronal populations. Targeting in this way allows population signals to be recorded and interpreted without blindness to neuronal diversity. Here, we evaluated the voltage-sensitive fluorescent protein, VSFP Butterfly 2.1, a genetically encoded voltage indicator (GEVI), for monitoring electrical activity of layer 2/3 cortical pyramidal neurons in mouse brain slices. Standard widefield fluorescence and two-photon imaging revealed robust, high signal-to-noise ratio read-outs of membrane voltage transients that are predominantly synaptic in nature and can be resolved as discrete areas of synaptically connected layer 2/3 neurons. We find that targeted expression of this GEVI in the cortex provides a flexible and promising tool for the analysis of L2/3 cortical network function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552543 | PMC |
http://dx.doi.org/10.14814/phy2.12468 | DOI Listing |
Small
September 2025
Jožef Stefan Institute, Jamova cesta 39, Ljubljana, SI-1000, Slovenia.
The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.
Background: Nodular hidradenoma (NH) is a rare benign adnexal tumor originating from sweat glands, often misdiagnosed due to nonspecific clinical manifestations. Ultrasonography (US) plays a critical role in the diagnosis of skin tumors, yet systematic descriptions of its sonographic features remain limited.
Objective: This study aims to investigate the very-high-frequency (VHF) characteristics of eccrine nodular hidradenoma (ENH) and establish key imaging criteria to differentiate it from other cutaneous/subcutaneous lesions.
J Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFNanoscale Adv
July 2025
University of Kentucky, Department of Chemical and Materials Engineering 177 F.P. Anderson Tower Lexington Kentucky 40506-0046 USA
The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.
View Article and Find Full Text PDFElife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDF