Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial-mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.07.107DOI Listing

Publication Analysis

Top Keywords

core protein
36
mir-30c mir-203a
24
hcv core
20
core
12
hepg2 cells
12
artificial expression
12
expression mir-30c
12
protein
10
expression
10
hepatitis virus
8

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Background And Objectives: α-Synuclein seed amplification assays (αSAAs) can improve the diagnosis of synucleinopathies and detect α-synuclein (αSyn) copathology in vivo in clinical practice. We aimed to evaluate the diagnostic performance of αSAA for detecting αSyn in CSF for diagnosing dementia with Lewy bodies (DLB) in a clinical cohort of cognitively impaired individuals. We explored how the coexistence of Alzheimer disease (AD) and αSyn pathology influences biomarker levels and clinical profiles.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.

View Article and Find Full Text PDF

Background: Heat illness is a dangerous condition marked by a widespread inflammatory response. Although Pogostemon cablin (Blanco) Benth and its derivatives are clinically used, their mechanisms remain unclear.

Methods: 11 heat illness patients and 14 healthy volunteers from Southwest Medical University Affiliated Hospital were enrolled.

View Article and Find Full Text PDF

Manipulation of host-plant preference by virus-induced changes to its insect vector's olfactory system.

Curr Biol

August 2025

National Key Laboratory of Green Pesticide, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Plant viruses are known to indirectly manipulate insect vector behavior by altering host-plant phenotypes, yet the mechanisms by which they directly regulate vector behavior to enhance transmission remain poorly understood. Here, we reveal how the southern rice black-streaked dwarf virus (SRBSDV) reprograms the host preference of its planthopper vector, Sogatella furcifera, from infected to healthy rice plants by disrupting immune-olfactory crosstalk. We demonstrate that the SRBSDV-encoded P8 protein competitively binds to the S.

View Article and Find Full Text PDF