Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Fresh patient specimens of castrate-resistant prostate cancer (CRPC) are invaluable for studying tumor heterogeneity and responses to current treatments. They can be used for primary patient-derived xenografts (PDXs) or serially transplantable PDXs, but only a small proportion of samples grow successfully. To improve the efficiency and quality of PDXs, we investigated the factors that determine the initial engraftment of patient tissues derived from TURP specimens.

Methods: Fresh tissue was collected from castrate patients who required a TURP for urinary symptoms. Tissue was grafted under the renal capsule of immune-compromised mice for up to 14 weeks. The abundance of cancer in ungrafted and grafted specimens was compared using histopathology. Mice were castrated or implanted with testosterone pellets to determine the androgen-responsiveness of CRPC PDXs from TURP tissue.

Results: Primary PDXs were successfully established from 7 of 10 patients that underwent grafting. Of the 112 grafts generated from these 10 patients, 21% contained cancer at harvest. Grafts were most successful when the original patient specimens contained high amounts of viable cancer, defined as samples with (i) at least 50% cancer cells, (ii) no physical damage, and (iii) detectable Ki67 expression. PDX grafts survived in castrated hosts and proliferated in response to testosterone, confirming that they were castrate resistant but androgen-responsive.

Conclusions: Primary PDXs of CRPC can be established from TURP specimens with modest success. The take rate can be increased if the original tissues contain sufficient numbers of actively proliferating cancer cells. Selecting specimens with abundant viable cancer will maximize the rate of engraftment and increase the efficiency of establishing PDXs that can be serially transplanted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23039DOI Listing

Publication Analysis

Top Keywords

primary patient-derived
8
patient-derived xenografts
8
turp specimens
8
castrate-resistant prostate
8
cancer
8
prostate cancer
8
patient specimens
8
pdxs serially
8
primary pdxs
8
viable cancer
8

Similar Publications

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Metastatic and relapsed osteosarcoma (OS) remains difficult to treat despite advanced surgical techniques, intensified chemotherapy, and targeted therapies. Adoptive immunotherapies such as chimeric antigen receptor (CAR) T cells, are in their nascent stage, but remain a viable therapeutic strategy for patients with aggressive solid tumors such as OS. Folate receptor- (FOLR1) has been functionally implicated in OS pathophysiology, providing rationale as a potential therapeutic target.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) therapies are the most recommended first-line treatment for wild-type unresectable metastatic colorectal cancer (CRC) according to the European Society for Medical Oncology guidelines. However, primary resistance renders this treatment ineffective for almost 40% of patients. Our previous work identified Aurora kinase A (AURKA) as a key resistance driver through non-canonical, Hippo-independent Yes-associated protein 1 (YAP1) activation.

View Article and Find Full Text PDF

Novel Thioredoxin reductase 1 inhibitor BS1801 relieves treatment resistance and triggers endoplasmic reticulum stress by elevating reactive oxygen species in glioma.

Redox Biol

August 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target

Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.

View Article and Find Full Text PDF

Acyl-CoA synthetase long-chain family member 4 (ACSL4)-targeting fluorescent probes for precision intraoperative visualization of hepatocellular carcinoma.

J Control Release

September 2025

Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China. Electronic address:

Purpose: This study aims to develop and validate a novel ACSL4-targeted fluorescent probe to enhance intraoperative visualization of hepatocellular carcinoma (HCC), emphasizing its binding affinity, specificity, and clinical applicability.

Methods: Transcriptomic sequencing data from TCGA, ICGC, CPTAC, and GSE25097 were analyzed to establish ACSL4 as a viable target for tumor visualization. An ACSL4-specific binding peptide (ABP) was identified using a combination of in vivo and in vitro phage display screening.

View Article and Find Full Text PDF