Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Follicular helper T (TFH) cells underpin T cell-dependent humoral immunity and the success of most vaccines. TFH cells also contribute to human immune disorders, such as autoimmunity, immunodeficiency, and malignancy. Understanding the molecular requirements for the generation and function of TFH cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunologic abnormalities.

Objective: We sought to determine the signaling pathways and cellular interactions required for the development and function of TFH cells in human subjects.

Methods: Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating follicular helper T (cTFH) cell subsets, memory B cells, and serum immunoglobulin levels were quantified and functionally assessed in healthy control subjects, as well as in patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS, or BTK.

Results: Loss-of-function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS, or BTK reduced cTFH cell frequencies. STAT3 and IL21/R LOF and STAT1 gain-of-function mutations skewed cTFH cell differentiation toward a phenotype characterized by overexpression of IFN-γ and programmed death 1. IFN-γ inhibited cTFH cell function in vitro and in vivo, as corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1, and IL12RB1 LOF mutations.

Conclusion: Specific mutations affect the quantity and quality of cTFH cells, highlighting the need to assess TFH cells in patients by using multiple criteria, including phenotype and function. Furthermore, IFN-γ functions in vivo to restrain TFH cell-induced B-cell differentiation. These findings shed new light on TFH cell biology and the integrated signaling pathways required for their generation, maintenance, and effector function and explain the compromised humoral immunity seen in patients with some PIDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042203PMC
http://dx.doi.org/10.1016/j.jaci.2015.05.036DOI Listing

Publication Analysis

Top Keywords

tfh cells
20
ctfh cell
16
follicular helper
12
cells
9
monogenic mutations
8
affect quantity
8
quantity quality
8
cells patients
8
human primary
8
primary immunodeficiencies
8

Similar Publications

Background: T follicular helper (TFH) cell lymphoma is complex, and we hope to provide a new perspective for its diagnosis.

Methods: We analysed the immunophenotypes of 89 mature T-cell lymphomas, including 52 nodal lymphomas of TFH origin, as well as 32 benign lymph node samples and 30 healthy bone marrow samples, by flow cytometry (FCM).

Results: Among pan-T cell markers, CD4CD5CD3 is the typical pattern that distinguishes TFH lymphoma from other T-cell lymphomas.

View Article and Find Full Text PDF

Type I interferon (IFN-I) is highly prevalent in autoimmune disorders and is intricately involved in disease pathogenesis, including Sjögren's disease (SjD), also known as Sjögren's syndrome. Although the T follicular helper (Tfh) cell response has been shown to drive SjD development in a mouse model of experimental Sjögren's syndrome (ESS), the connection between IFN-I and the Tfh cell response remains unclear. As the activation of stimulator of interferon genes (STING) induces IFN-I production, we first demonstrated that mice deficient in STING or IFN-I signaling presented diminished Tfh cells and were completely resistant to ESS development.

View Article and Find Full Text PDF

Oxymatrine attenuates the type 1 diabetes mellitus via negative regulation of the follicular helper T cells.

Eur J Pharmacol

September 2025

Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China. Electronic address:

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder in which autoantibodies cause the immune system to attack and destroy pancreatic β-cells, leading to insufficient insulin production and impaired blood glucose control. T follicular helper (Tfh) cells are recognized as a group of CD4 T cells that help B cells to produce high-affinity antibodies. Our previous research found that oxymatrine (OMT) exhibits excellent immunomodulatory properties on Tfh cells in autoimmune diseases.

View Article and Find Full Text PDF

Pemphigus vulgaris (PV) is an autoimmune blistering disorder, which is caused by the loss of desmosomal cell-cell adhesion, initiated by the binding of IgG antibodies against the desmosomal components desmoglein (Dsg)1 and Dsg3. Dsg3-reactive CD4 T helper (Th) cells, in particular follicular Th (Tfh) cells, play a central role in autoantibody production by Dsg3-specific B cells. In this study, we challenged the concept that distinct Dsg3-reactive CD4 T cell subsets are critical in PV pathogenesis utilizing phenotypical and functional state-of-the-art ex vivo assays.

View Article and Find Full Text PDF

CD4 T follicular helper (T) cells support tailored B cell responses against multiple classes of pathogens. To reveal how diverse T phenotypes are established, we profiled mouse T cells in response to viral, helminth and bacterial infection. We identified a core T signature that is distinct from CD4 T follicular regulatory and effector cells and identified pathogen-specific transcriptional modules that shape T function.

View Article and Find Full Text PDF