First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

PLoS One

Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America.

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495995PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131131PLOS

Publication Analysis

Top Keywords

biomechanically adaptive
12
bone modeling
12
cases biomechanically
8
adaptive bone
8
non-avian dinosaurs
8
periosteal bone
8
tibia expected
8
expected presumably
8
bone
6
reported cases
4

Similar Publications

Objective: The aim of this study was to ascertain whether a prosthetic meniscus adapts pressures to native tibial contact pressures in a canine stifle joint after total medial meniscectomy.

Study Design: Ex vivo biomechanical experimental study.

Sample Population: Seven cadaveric hindlimbs of seven large-breed dogs.

View Article and Find Full Text PDF

Effective locomotion requires physiological systems to adapt to instabilities. While gait perturbation recovery often appears rapid, it is possible that longer-lasting effects may be present. Therefore, this study explored recovery trends of gait dynamics following an experimenter-induced perturbation.

View Article and Find Full Text PDF

Background: During pregnancy, significant physiological, morphological, and hormonal changes profoundly affect women's biomechanics, increasing the risk of falls and musculoskeletal complaints, especially in the third trimester. To understand movement adaptations and musculoskeletal disorders in pregnant women, kinetic analysis using pregnant-specific multi-segment or musculoskeletal models is essential. This review aims to evaluate the development, applications and limitations of such models intended for kinetic analysis in pregnancy.

View Article and Find Full Text PDF

The patient-specific mandibular reconstruction plate (PSMRP) has gained prominence for its precise adaptation to mandibular contours and reported enhanced mechanical reliability compared to the manual-bent mandibular reconstruction plate (MBMRP). Despite this, a biomechanical comparison between MBMRP and PSMRP is essential for informed clinical decision-making and advancing the field of mandibular reconstruction. Thereupon, biomechanical behavior was compared between two reconstructed mandibles with the MBMRP made of commercial pure titanium plate and the PSMRP stemmed from a common ramus reconstruction case, respectively, in physiological simulation using finite element analyses.

View Article and Find Full Text PDF

Scaphotrapeziotrapezoid arthrodesis is a controversial surgical procedure for wrist disorders and its biomechanical effect remains unclear. This study investigated scaphotrapeziotrapezoid fusion based on a previously validated whole-wrist finite element model to simulate arthrodesis by creating a unified bone complex from the three bones (scaphoid, trapezium and trapezoid) in the joint. The model was analysed under physiological grasping loads to examine axial load distributions and articular contact pressures at the radioscaphoid and radiolunate interfaces.

View Article and Find Full Text PDF