Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age-related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri-phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age-related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte-specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte-specific Pdss2-deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age-associated oocyte deficits causing infertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568976PMC
http://dx.doi.org/10.1111/acel.12368DOI Listing

Publication Analysis

Top Keywords

oocyte quality
12
reproductive aging
8
aging female
8
quality quantity
8
administration coq10
8
oocyte
5
coenzyme q10
4
q10 restores
4
restores oocyte
4
mitochondrial
4

Similar Publications

Background And Aim: Indonesia's indigenous Kacang goat population is in decline, posing a threat to food security and genetic diversity. maturation and cryopreservation techniques are key strategies for genetic conservation. However, heat shock stress during cryopreservation can compromise oocyte viability.

View Article and Find Full Text PDF

Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.

View Article and Find Full Text PDF

Background And Aim: Porcine follicular fluid (pFF) is frequently used to mimic the follicular microenvironment during maturation (IVM) of oocytes. However, the influence of oxidative stress levels within pFF on oocyte quality and embryo development remains unclear. This study aimed to investigate how varying oxidative stress index (OSI) of pFF affect porcine oocyte meiotic progression, fertilization, and embryonic development during IVM.

View Article and Find Full Text PDF

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

Metabolic stress and negative energy balance (NEB) are typical undesirable accompanying phenomenon of the post-partum period in dairy cattle. They negatively affect not only milk production but also the reproductive abilities of the cow, and it is therefore desirable to recognize NEB early to prevent its development. Metabolic stress markers are traditionally total cholesterol (tChol), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB) and triacylglycerols (TAGs).

View Article and Find Full Text PDF