Nitrogen-doped carbon nanotubes via a facile two-step approach as an efficient catalyst for the direct dehydrogenation of ethylbenzene.

Phys Chem Chem Phys

State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel and efficient nitrogen-doped carbon nanotube (A-M-CNT) catalyst has been prepared by a facile two-step method, including prior air activation and subsequent pyrolysis of the carbon nanotubes with melamine. The as-synthesized A-M-CNT affords superior catalytic activity to the nitrogen-doped CNT without air activation (M-CNT) and pristine CNT, ascribed to its unique microstructure and surface chemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp02161hDOI Listing

Publication Analysis

Top Keywords

nitrogen-doped carbon
8
carbon nanotubes
8
facile two-step
8
air activation
8
nanotubes facile
4
two-step approach
4
approach efficient
4
efficient catalyst
4
catalyst direct
4
direct dehydrogenation
4

Similar Publications

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

Asymmetric Electronic Distribution at Mn-Cu Dual Atomic Sites Promoting Electrochemical Conversion of N to NH.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Electrochemical synthesis of ammonia (NH) is a promising green alternative to the conventional Haber-Bosch process. Here, we report the synthesis of a heteroatomic metal-metal bonded dual atomic (DA) Mn-Cu catalytic site embedded within nitrogen-doped carbon (NC) matrix for high-performance electrochemical reduction of N to NH. The asymmetric electronic distribution localized at the dual atomic sites synergistically enhances the adsorption and activation of N, facilitating the complex proton-coupled electron transfer process.

View Article and Find Full Text PDF