Visible-Light-Driven Intermolecular [2+2] Cycloadditions between Coumarin-3-Carboxylates and Acrylamide Analogs.

Chemistry

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Haidian District, Beijing, 100190 (P. R. China).

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper reports a room temperature visible-light-driven protocol for the intermolecular [2+2] cycloadditions between coumarin-3-carboxylates and acrylamides analogs by an energy-transfer process. Using an iridium complex FIrPic as a photosensitizer and a 3 W blue LED as a light source, an array of cyclobutabenzocypyranones were prepared in moderate to excellent yields.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201501176DOI Listing

Publication Analysis

Top Keywords

intermolecular [2+2]
8
[2+2] cycloadditions
8
cycloadditions coumarin-3-carboxylates
8
visible-light-driven intermolecular
4
coumarin-3-carboxylates acrylamide
4
acrylamide analogs
4
analogs paper
4
paper reports
4
reports room
4
room temperature
4

Similar Publications

In single crystals of C-N atropisomeric -(2-halophenyl)quinolin-2-one and the thione analogue, a unique association based on a halogen-π interaction was detected. In racemic and optically pure -(2-bromo- or 2-chlorophenyl)quinolin-2-ones, homochiral layered polymers, which consist of ()- or ()-atropisomers, were formed through intermolecular halogen-π association. The halogen-π association in the racemates is due to a halogen bond (C-X···π) between a σ-hole on the halogen atom and a π-electron on the quinolinone benzene ring, while that in optically pure forms is caused by an n-π* interaction between a lone electron pair on the halogen atom and a π* orbital of the quinolinone.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

A facile and efficient one-pot rongalite-mediated self-dimerization of 3-acylidene-2-oxindoles has been developed for the diastereoselective synthesis of highly functionalized dispirocyclopentanebisoxindoles. The reaction proceeds a domino sequence involving intermolecular Michael addition followed by intramolecular aldol cyclization under basic conditions. Rongalite, an inexpensive and readily available reagent (∼$0.

View Article and Find Full Text PDF

Nickel-Catalyzed Cross-Dehydrogenative Coupling of Aldehydes and Alkenes toward Skipped Enones.

J Am Chem Soc

September 2025

Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States.

The direct transformation of C-H bonds into C-C bonds via cross-dehydrogenative coupling (CDC) represents a powerful strategy in synthetic chemistry, enabling streamlined bond construction without the need for prefunctionalized substrates. While traditional CDC approaches rely on polar mechanisms and preactivation of one of the C-H partners, recent advances have introduced radical-based strategies that employ a hydrogen atom transfer (HAT) approach to access carbon-centered radicals from unactivated substrates. Herein, we report a nickel-catalyzed CDC reaction between aldehydes and alkenes for the synthesis of skipped enones, leveraging aryl radicals as intermolecular HAT agents.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) have transformed modern medicine, offering targeted therapies for cancer, autoimmune disorders, and infectious diseases. To enhance patient convenience, subcutaneous administration is increasingly prioritized, requiring highly concentrated formulations. However, high viscosity of these formulations hinders manufacturability, injectability, and stability.

View Article and Find Full Text PDF