Upregulation of Interferon Regulatory Factor 6 Promotes Neuronal Apoptosis After Traumatic Brain Injury in Adult Rats.

Cell Mol Neurobiol

Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.

Published: January 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interferon regulatory factor (IRF) family was first discovered as a set of transcriptional regulators of the type I interferon system in 1988. In mammals, the IRF family includes nine members that play important roles in the immune system, oncogenesis, and apoptosis. However, the distribution and the function of IRF6 in the central nervous system are limited. In this study, we established an adult rat traumatic brain injury (TBI) model. Compared to the sham brain cortex, Western blot and immunohistochemistry showed significant upregulation of IRF6 in the ipsilateral brain cortex after TBI. Immunofluorescence double-labeling showed that IRF6 completely co-localized with neurons, not astrocytes or oligodendrocytes. Furthermore, we detected that the neuronal apoptosis marker active caspase-3 co-localized with IRF6 in neurons. Additionally, IRF6 knockdown in PC12 cells in vitro resulted in a decrease in active caspase-3 expression and an increase in Bcl-2 and p-Akt expression. We conclude that IRF6 might promote neuronal apoptosis by inhibiting Akt phosphorylation after TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482416PMC
http://dx.doi.org/10.1007/s10571-015-0217-3DOI Listing

Publication Analysis

Top Keywords

neuronal apoptosis
12
interferon regulatory
8
regulatory factor
8
traumatic brain
8
brain injury
8
irf family
8
brain cortex
8
active caspase-3
8
irf6
6
upregulation interferon
4

Similar Publications

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health.

View Article and Find Full Text PDF

Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF