98%
921
2 minutes
20
Background: Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited.
Results: A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na(+) accumulation independent phase termed the 'osmotic stress' phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na(+) in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na(+) in the shoot indicates variation in tissue tolerance mechanisms between the cultivars.
Conclusions: Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion-independent stress and shoot ion dependent stress) makes it a useful tool for genetic and physiological studies to elucidate processes that contribute to salinity tolerance in rice. The technique has the potential for identifying the genetic basis of these mechanisms and assisting in pyramiding different tolerance mechanisms into breeding lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4884049 | PMC |
http://dx.doi.org/10.1186/s12284-014-0016-3 | DOI Listing |
Open Med (Wars)
August 2025
Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781, Warsaw, Poland.
Background: Recent studies have highlighted that one of the main drivers for metastatic formation and resistance to the therapy are circulating tumor cells (CTCs) and cancer stem-like cells (CSCs). Measuring the CTCs has emerged as a non-invasive procedure for selecting the patients with higher risk of progression/relapse. However, still there are no methods enabling the identification of stem-like phenotype of the CTCs.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.
Anthracnose, caused by Colletotrichum gloeosporioides, poses a significant threat to blueberries, necessitating a deeper understanding of the genetic mechanisms underlying resistance to develop efficient breeding strategies. Here, we conducted a genome-wide association study on 355 advanced selections of southern highbush blueberry from the University of Florida Blueberry Breeding and Genomics Program. Visual scores and image analyses were used for assessing disease severity.
View Article and Find Full Text PDFGenome Med
September 2025
School of Biomedical Engineering, Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
Background: Accurate subtyping and risk stratification are imperative for prognostication and clinical decision-making in small cell lung cancer (SCLC). However, traditional molecular subtyping is resource-intensive and challenging to translate into clinical practice.
Methods: A total of 517 SCLC patients and their corresponding hematoxylin and eosin (H&E)-stained whole slide images (WSIs) from three independent medical institutions were analyzed.
Nat Commun
September 2025
BioMap Research, Palo Alto, CA, USA.
Investigating cell morphology changes after perturbations using high-throughput image-based profiling is increasingly important for phenotypic drug discovery, including predicting mechanisms of action (MOA) and compound bioactivity. The vast space of chemical and genetic perturbations makes it impractical to explore all possibilities using conventional methods. Here we propose MorphDiff, a transcriptome-guided latent diffusion model that simulates high-fidelity cell morphological responses to perturbations.
View Article and Find Full Text PDFJ Biomech Eng
September 2025
Division of Pulmonary, Allergy, and Critical Care Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL., 1900 University Blvd., Tinsley Harrison Tower, Suite 422, Birmingham, AL 35294.
The respiratory system depends on complex biomechanical processes to enable gas exchange. The mechanical properties of the lung parenchyma, airways, vasculature, and surrounding structures play an essential role in overall ventilation efficacy. These complex biomechanical processes however are significantly altered in chronic obstructive pulmonary disease (COPD) due to emphysematous destruction of lung parenchyma, chronic airway inflammation, and small airway obstruction.
View Article and Find Full Text PDF