Myopathic lamin mutations cause reductive stress and activate the nrf2/keap-1 pathway.

PLoS Genet

Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America.

Published: May 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in the human LMNA gene cause muscular dystrophy by mechanisms that are incompletely understood. The LMNA gene encodes A-type lamins, intermediate filaments that form a network underlying the inner nuclear membrane, providing structural support for the nucleus and organizing the genome. To better understand the pathogenesis caused by mutant lamins, we performed a structural and functional analysis on LMNA missense mutations identified in muscular dystrophy patients. These mutations perturb the tertiary structure of the conserved A-type lamin Ig-fold domain. To identify the effects of these structural perturbations on lamin function, we modeled these mutations in Drosophila Lamin C and expressed the mutant lamins in muscle. We found that the structural perturbations had minimal dominant effects on nuclear stiffness, suggesting that the muscle pathology was not accompanied by major structural disruption of the peripheral nuclear lamina. However, subtle alterations in the lamina network and subnuclear reorganization of lamins remain possible. Affected muscles had cytoplasmic aggregation of lamins and additional nuclear envelope proteins. Transcription profiling revealed upregulation of many Nrf2 target genes. Nrf2 is normally sequestered in the cytoplasm by Keap-1. Under oxidative stress Nrf2 dissociates from Keap-1, translocates into the nucleus, and activates gene expression. Unexpectedly, biochemical analyses revealed high levels of reducing agents, indicative of reductive stress. The accumulation of cytoplasmic lamin aggregates correlated with elevated levels of the autophagy adaptor p62/SQSTM1, which also binds Keap-1, abrogating Nrf2 cytoplasmic sequestration, allowing Nrf2 nuclear translocation and target gene activation. Elevated p62/SQSTM1 and nuclear enrichment of Nrf2 were identified in muscle biopsies from the corresponding muscular dystrophy patients, validating the disease relevance of our Drosophila model. Thus, novel connections were made between mutant lamins and the Nrf2 signaling pathway, suggesting new avenues of therapeutic intervention that include regulation of protein folding and metabolism, as well as maintenance of redox homoeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440730PMC
http://dx.doi.org/10.1371/journal.pgen.1005231DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
12
mutant lamins
12
reductive stress
8
lmna gene
8
dystrophy patients
8
structural perturbations
8
nrf2
7
lamins
6
nuclear
6
mutations
5

Similar Publications

Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.

View Article and Find Full Text PDF

Objective: It is important to raise awareness of the nutritional problems that can be overlooked during the follow-up visits with children who suffer from neuromuscular diseases, as these dietary differences may lead to additional neurological and systemic problems and impair the quality of life of the patient. The aim of this study was to evaluate the nutritional status of children with neuromuscular disorders and to prevent possible complications by recognizing possible nutritional problems in advance.

Methods: Patients who applied to the outpatient clinic at Cukurova University, Faculty of Medicine, Department of Pediatric Neurology beginning in April 2022 with a neuromuscular disorder diagnosis were followed up with and were included in the study.

View Article and Find Full Text PDF

Objective: This study examined the content validity of EQ-5D for Chinese patients with DMD. Specifically, it investigated: (1) the content validity of EQ-5D-5L in adult DMD patients and (2) the content validity of EQ-5D-Y-3L (Y-3L) in DMD patients aged 8-15 years.

Method: This qualitative study used semi-structured interviews and conducted one-on-one and online, with two groups of individuals with DMD to examine the content validity of the EQ-5D-5L and Y-3L.

View Article and Find Full Text PDF

Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.

View Article and Find Full Text PDF