98%
921
2 minutes
20
We present a method of direct patterning of plasmonic nanofeatures on glass that is fast, scalable, tunable, and accessible to a wide range of users-a unique combination in the context of current nanofabrication options for plasmonic devices. These benefits are made possible by the localized heating and subsequent annealing of thin metal films using infrared light from a commercial CO2 laser system. This approach results in patterning times of 30 mm(2)/min with an average cost of $0.10/mm(2). Colloidal Au nanoparticles with diameters between 15 and 40 nm can be formed on glass surfaces with x-y patterning resolutions of ∼180 μm. While the higher resolution provided by lithography is essential in many applications, in cases where the spatial patterning resolution threshold is lower, commercial CO2 laser processing can be 30-fold faster and 400-fold less expensive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b01092 | DOI Listing |
Nano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Chemistry, Gyeongsang National University, Jinju, 52828, South Korea.
Patchy nanoparticles (NPs) enable directional interactions and dynamic structural transformations, yet controlling polymeric patch formation with high spatial precision remains a significant challenge. Here, a thermally driven approach is presented to forming polystyrene (PS) patches on low-curvature facets of anisotropic gold nanocubes (NCs) using a single polymer component. Heating in DMF above 90 °C triggers selective desorption of PS chains from high-curvature edges and vertices via Au─S bond dissociation, followed by migration and deposition into rounded patches on flat surfaces.
View Article and Find Full Text PDFBiomater Res
September 2025
Laboratory of Medical Imaging, The First People's Hospital of Zhenjiang, Zhenjiang 212001, P. R. China.
Mesoporous metal nanomaterials (MMNs) have gained interest in biomedicine for their unique properties, but their potential is limited by the predominance of spherical shapes and the neglect of morphological effects on biological activity, which hinders the reasonable evaluation of morphology-dependent enzyme-like activities and biological behaviors and its further biomedical applications. It is therefore imperative to find an effective and facile method to design and prepare MMNs with novel, well-defined morphologies. Herein, we fabricated 3 mesoporous platinum nanoenzymes including sphere, rod, and bipyramid topologies [Au@mesoPt sphere, Au@mesoPt rod, and Au@mesoPt bipyramid nanoparticles (NPs), respectively] via a facile atomic layer deposition method using gold NPs (Au NPs) as the templated cores and Pluronic F127 as a structure-directing agent.
View Article and Find Full Text PDFRSC Adv
August 2025
Assistant Professor, Department of Chemistry, School of Applied Sciences & Humanities, Vignan's Foundation for Science, Technology and Research Vadlamudi Guntur India-522213 +91 863 2344777.
We report the synthesis and characterization of thiol-stabilized gold nanoparticles (AuNPs), functionalized with bis(pyrazole)pyridine ligands (L4 and 10), and their subsequent assembly into rectangular nano/microstripes using a lithographically controlled wetting (LCW) technique. The resulting microstructured patterns, with widths of ∼2 μm and heights of 150-200 μm, were employed to simultaneously explore spin crossover (SCO) behavior and surface-enhanced Raman scattering (SERS) properties. Compound 10 exhibited SCO behavior with a molar magnetic susceptibility () of ∼3.
View Article and Find Full Text PDFNanophotonics
August 2025
Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
We present a systematic investigation of the optical response to circularly polarized illumination in twisted stacked plasmonic nanostructures. The system consists in two identical, parallel gold triskelia, centrally aligned and rotated at a certain angle relative to each other. Sample fabrication was accomplished through a novel multilevel high-resolution electron beam lithography.
View Article and Find Full Text PDF