Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Compared with the infrared spectrum fixed focal length system and infrared spectrum dual-zoom system, infrared spectrum continuous zoom imaging system which has continuous variational field of view can track targets sequentially, so it is a research direction in infrared spectrum imaging technology. Some new technologies are presented overseas in order to improve the detection performance, reduce cost and have good athermalized performance in infrared spectrum continuous zoom imaging system. Infrared material, infrared detector and variable aperture, those new technologies are su mmarized and the idiographic application of those new technologies in infrared spectrum continuous zoom imaging system are presented in the paper, for example athermalization of an infrared spectrum zoom lens system with new infrared material for target detection, dual band infrared spectrum continuous zoom imaging system with mid-wave infrared and long-wave infrared, infrared spectrum continuous zoom imaging system with high ratio, nfrared spectrum continuous zoom imaging system with dual F/number. It is useful for the development of chinese infrared continuous zoom imaging system.

Download full-text PDF

Source

Publication Analysis

Top Keywords

infrared spectrum
40
zoom imaging
32
imaging system
32
continuous zoom
28
spectrum continuous
24
system infrared
16
infrared
15
spectrum
11
system
11
zoom
9

Similar Publications

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

The emergence of drug-resistant bacteria due to excessive antibiotic use has drawn increasing attention to inorganic nanoparticles for their broad-spectrum antibacterial properties. Here, a "green" strategy for the simultaneous in situ synthesis of silver nanoparticles (AgNPs) during the photocrosslinking process of casein hydrogels is described. The in situ photoactivated biomineralization of AgNPs provides noticeable stability and antibacterial activity, with high photothermal effect during a sequential near-infrared laser activation.

View Article and Find Full Text PDF

Gbits/s-Level Encrypted Spectral Wireless Communication Enabled by High-Performance Flexible Organic Hyperspectrometer.

Adv Mater

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.

The exponential growth of data in the information era has pushed conventional optical communication technology to its limitations, including inefficient spectral utilization, slow data rate, and inherent security vulnerabilities. Here, a transformative high-speed organic spectral wireless communication (SWC) technology enabled by a flexible, miniaturized, and high-performance organic hyperspectrometer is proposed that integrates ultrahigh-speed data transmission with hardware-level encryption. By synergistically combining organic photodetector arrays with tunable responsivities and spectral-tunable organic filters, the organic hyperspectrometer achieves a broad spectral detection range of 400 to 900 nm, resolution of 1.

View Article and Find Full Text PDF

Primary agricultural products are closely related to our daily lives, as they serve not only as raw materials for food processing but also as products directly purchased by consumers. These products face the issue of freshness decline and spoilage during both production and consumption. Freshness degradation induces sensory deterioration and nutritional loss and promotes harmful substance accumulation, causing gastrointestinal issues or even endangering life.

View Article and Find Full Text PDF

Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.

View Article and Find Full Text PDF