Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-015-4373-2DOI Listing

Publication Analysis

Top Keywords

hydrocarbon degradation
12
harrowing treatment
12
bacterial community
8
community structure
8
physical reworking
8
16s rrna
8
sediments
7
hydrocarbon
6
bacterial
5
physical sediments
4

Similar Publications

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

A surface enhanced Raman scattering (SERS)-based sensing platform is devised integrating a TMB redox system for rapid dopamine detection. Gold nanobipyramids (Au NBPs), synthesized via the heat-mediated seed-mediated growth method, possess dual functionality of peroxidase-like activity and SERS activity. This enables them to catalyze the oxidation of TMB and simultaneously amplify the Raman signal of the oxidized TMB product (oxTMB).

View Article and Find Full Text PDF

A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).

View Article and Find Full Text PDF

Cypriot tomato landraces exhibit partial resistance to Fusarium wilt through distinct jasmonic and salicylic acid-mediated immune responses, offering promising genetic resources for breeding durable tomato cultivars. Fusarium wilt, caused by Fusarium oxysporum f. sp.

View Article and Find Full Text PDF