98%
921
2 minutes
20
The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal's regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of day when this was not also related to feeding time. This double dissociation demonstrates that hippocampal theta is modulated with a circadian timescale, and that this modulation is strongly entrained by food. One interpretation of this finding is that the hippocampus is responsive to a food entrainable oscillator (FEO) that might modulate foraging behavior over circadian periods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356069 | PMC |
http://dx.doi.org/10.3389/fnbeh.2015.00061 | DOI Listing |
Front Neurosci
August 2025
Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
Introduction: Siestas, or daytime naps, play a critical role in relieving sleep pressure and maintaining physiological balance. However, the effects of siesta disruption remain largely unexplored.
Methods: In this study, we disrupted the natural siesta period (ZT20-23) through daily bedding changes for 2 weeks and examined its effects on overall stress levels, sleep architecture, behavior, and transcriptional responses in the frontal cortex.
Biochem Biophys Rep
December 2025
Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.
The circadian clock in the suprachiasmatic nucleus and peripheral tissues functions to regulate key physiological and cellular systems in a cycle approximating 24 h. Understanding the ontogeny of the circadian clock mechanism during mammalian development is incomplete. Accordingly, we used the mouse as a model and a previously published RNAseq dataset to determine when expression of core genes regulating the circadian clock increase in transcript abundance in fetal and postnatal brain, heart, liver, and kidney.
View Article and Find Full Text PDFRSC Adv
August 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University Wuhan P.R. China
Circadian rhythms are essential for maintaining health and homeostasis, and disruptions can lead to sleep disorders, metabolic diseases, cardiovascular diseases, and neurodegenerative conditions. Herein, we discuss the importance of circadian rhythms and the challenges in their regulation, highlighting the limitations of traditional drug delivery methods. Various nanomaterials such as liposomes, polymeric nanoparticles (PNPs), and mesoporous silica nanoparticles have unique physical and chemical properties.
View Article and Find Full Text PDFSleep Adv
July 2025
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, United States.
The mismatch between rising sleep need and the fluctuating ability to fall asleep underlies insomnia-the most common sleep disorder-yet remains poorly understood. While sleep need increases steadily with time awake, sleep propensity-the likelihood of transitioning from wake to sleep-follows a bimodal pattern, peaking in the mid-afternoon, dipping in the evening, and rising again near bedtime. Building on our previously developed wave model of sleep dynamics, we extend this homeostatic framework to the waking period and show that it predicts the observed bimodal sleep propensity curve.
View Article and Find Full Text PDFSleep Adv
June 2025
Sleep and Performance Research Center, Washington State University, Spokane, WA, United States.
Study Objectives: There are large individual differences in the homeostatic response to sleep deprivation, as reflected in slow wave sleep (SWS) and electroencephalogram (EEG) spectral power, which have largely been left unexplained. Recent evidence suggests the possible involvement of the activity-regulated cytoskeleton-associated protein () gene. Here we assessed the effects of the "c.
View Article and Find Full Text PDF