Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lactate, a product of glycolysis, has been shown to play a key role in the metabolic support of neurons/axons in the CNS by both astrocytes and oligodendrocytes through monocarboxylate transporters (MCTs). Despite such importance in the CNS, little is known about MCT expression and lactate function in the PNS. Here we show that mouse MCT1, MCT2, and MCT4 are expressed in the PNS. While DRG neurons express MCT1, myelinating Schwann cells (SCs) coexpress MCT1 and MCT4 in a domain-specific fashion, mainly in regions of noncompact myelin. Interestingly, SC-specific downregulation of MCT1 expression in rat neuron/SC cocultures led to increased myelination, while its downregulation in neurons resulted in a decreased amount of neurofilament. Finally, pure rat SCs grown in the presence of lactate exhibited an increase in the level of expression of the main myelin regulator gene Krox20/Egr2 and the myelin gene P0. These data indicate that lactate homeostasis participates in the regulation of the SC myelination program and reveal that similar to CNS, PNS axon-glial metabolic interactions are most likely mediated by MCTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605293PMC
http://dx.doi.org/10.1523/JNEUROSCI.3534-14.2015DOI Listing

Publication Analysis

Top Keywords

monocarboxylate transporters
8
lactate
5
distribution monocarboxylate
4
transporters peripheral
4
peripheral nervous
4
nervous system
4
system suggests
4
suggests putative
4
putative roles
4
roles lactate
4

Similar Publications

SLC16A3 (MCT4) expression in tumor immunity and Metabolism: Insights from pan-cancer analysis.

Biochem Biophys Rep

June 2025

The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.

Background: SLC16A3, a highly expressed H + -coupled symporter, facilitates lactate transport via monocarboxylate transporters (MCTs), contributing to acidosis. Although SLC16A3 has been implicated in tumor development, its role in tumor immunity remains unclear.

Methods: A pan-cancer analysis was conducted using datasets from The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, and Genotype-Tissue Expression projects.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Most eukaryotic membranes comprise phospholipids bearing two hydrophobic tails, but -acylphosphatidylethanolamine (NAPE) stands out as a long-known but poorly understood phospholipid with three hydrophobic groups. What little attention NAPE has received has been devoted to understanding its metabolic functions as a precursor to -acylethanolamine (NAE), a bioactive lipid that acts as an endocannabinoid. Yet, levels of NAPE increase during myocardial infarction and ischemia, suggesting potential signaling roles for this lipid.

View Article and Find Full Text PDF

Lactylation, an emerging metabolism-dependent post-translational modification, serves as a core mechanism linking metabolic reprogramming with epigenetic regulation in establishing the multifaceted hallmarks of cancer. The present review systematically elucidates how lactylation dynamically regulates the functions of both histone and non-histone proteins, driving the acquisition of classical cancer hallmarks including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, activation of invasion and metastasis and replicative immortality. Furthermore, lactylation is intricately involved in enabling the emerging hallmarks of cancer, such as the maintenance of genome instability, shaping of a pro-inflammatory tumor microenvironment (TME), immune escape, metabolic reprogramming, unlocking phenotypic plasticity and non-mutational epigenetic reprogramming.

View Article and Find Full Text PDF