Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling.

Plant Physiol

Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (A.A., P.D., S.C., M.-C.T., L.N., E.M.);Centre National de la Recherche Scientifi

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arabidopsis (Arabidopsis thaliana) absorbs inorganic phosphate (Pi) from the soil through an active transport process mediated by the nine members of the PHOSPHATE TRANSPORTER1 (PHT1) family. These proteins share a high level of similarity (greater than 61%), with overlapping expression patterns. The resulting genetic and functional redundancy prevents the analysis of their specific roles. To overcome this difficulty, our approach combined several mutations with gene silencing to inactivate multiple members of the PHT1 family, including a cluster of genes localized on chromosome 5 (PHT1;1, PHT1;2, and PHT1;3). Physiological analyses of these lines established that these three genes, along with PHT1;4, are the main contributors to Pi uptake. Furthermore, PHT1;1 plays an important role in translocation from roots to leaves in high phosphate conditions. These genetic tools also revealed that some PHT1 transporters likely exhibit a dual affinity for phosphate, suggesting that their activity is posttranslationally controlled. These lines display significant phosphate deficiency-related phenotypes (e.g. biomass and yield) due to a massive (80%-96%) reduction in phosphate uptake activities. These defects limited the amount of internal Pi pool, inducing compensatory mechanisms triggered by the systemic Pi starvation response. Such reactions have been uncoupled from PHT1 activity, suggesting that systemic Pi sensing is most probably acting downstream of PHT1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378149PMC
http://dx.doi.org/10.1104/pp.114.252338DOI Listing

Publication Analysis

Top Keywords

phosphate
8
phosphate transporter1
8
phosphate uptake
8
pht1 family
8
pht1
5
reducing genetic
4
genetic redundancy
4
redundancy arabidopsis
4
arabidopsis phosphate
4
transporter1 transporters
4

Similar Publications

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

Correction: Diagnosis and management of hypoparathyroidism: recommendations of the working group of the bone section of the Hellenic endocrine society.

Hormones (Athens)

September 2025

Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT Hospital, 10 Athinas Str, Kifissia, Athens, PC: 14561, Greece.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

Purpose: This study was designed to analyse the influence of temperature, pH and storage time on unbound fractions of PHT and VPA.

Methods: The influence of ultrafiltration (UF) temperature on measured unbound fractions of PHT and VPA in spiked samples was evaluated in a single laboratory experiment and in data from a national external quality control (EQC) database. The influence of pH adjustment with phosphate buffered saline (PBS) on measured unbound fractions of PHT and VPA was investigated in patient samples.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF