Temperature dependence of in vitro Rubisco kinetics in species of Flaveria with different photosynthetic mechanisms.

Photosynth Res

Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Ctra. Valldemossa km. 7.5, 07122, Palma, Balearic Islands, Spain.

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is general consensus in the literature that plants with different photosynthetic mechanisms (i.e. C3 vs. C4) have Rubiscos characterised by different kinetic performances. However, potential differences in the temperature dependencies of Rubisco kinetic parameters between C3 and C4 plants are uncertain. Accordingly, six species of Flaveria with contrasting photosynthetic mechanisms (C3, C3/C4 and C4) were selected and their Rubisco Michaelis-Menten constants for CO2 and RuBP (K c and K RuBP), carboxylase catalytic turnover rate ([Formula: see text]) and CO2/O2 specificity factor (S c/o) were measured between 10 and 40 °C. The results confirmed different Rubisco characteristics between C3 and C4 plants. Rubisco from the C3 species had higher E a for K c and [Formula: see text] than that from C4 species, which were translated into differences in the temperature response of the carboxylase catalytic efficiency ([Formula: see text]/K c). However, E a did not differ for S c/o or K RuBP. Although a mechanism remains uncertain, it appears that the Asp/Glu-149-Ala and Met-309-Ile substitutions lead to differences in the temperature responses of catalysis between C3 and C4 Rubiscos in Flaveria. Therefore, the above observations are consistent with the fact that C3 species have a higher photosynthetic efficiency and ecological dominance in cool environments, with respect to C4 species in temperate environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-015-0092-2DOI Listing

Publication Analysis

Top Keywords

photosynthetic mechanisms
12
differences temperature
12
species flaveria
8
carboxylase catalytic
8
[formula text]
8
species higher
8
species
6
rubisco
5
temperature
4
temperature dependence
4

Similar Publications

Wheat blast caused by the fungus (MoT) pathotype is a catastrophic disease that threatens global food security. Lately, was discovered as a blast resistance gene in wheat genotype S615. However, while has recently been cloned, the precise underlying biochemical and molecular mechanism by which this gene confers resistance against MoT, remains to be fully elucidated.

View Article and Find Full Text PDF

Hydroxylation of HPPD facilitates its PUB11-mediated ubiquitination and degradation in response to oxidative stress in Arabidopsis.

Plant Commun

September 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China. Electronic address:

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a critical role in plant photosynthesis, and is essential for enhancing tolerance to oxidative stress. However, the precise mechanisms through which plants regulate HPPD in response to oxidative stress remain largely unknown. Here, we report that the Arabidopsis thaliana HPPD (AtHPPD) undergoes an uncharacterized post-translational modification, namely phenylalanine hydroxylation, in response to excessive hydroxyl radicals (·OH), thereby mediating oxidative stress tolerance.

View Article and Find Full Text PDF

Phycobilisome (PBS) is a water-soluble light-harvesting supercomplex found in cyanobacteria, glaucophytes, and rhodophytes. PBS interacts with photosynthetic reaction centers, specifically photosystems II and I (PSII and PSI), embedded in the thylakoid membrane. It is widely accepted that PBS predominantly associates with PSII, which functions as the initial complex in the linear electron transport chain.

View Article and Find Full Text PDF

Autotoxicity in Cucumis melo L. and its alleviation by exogenous silicon: Physiological and biochemical mechanisms.

Plant Physiol Biochem

September 2025

Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.

Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.

View Article and Find Full Text PDF

Advances in molecular mechanisms of genetic mutations underlying chlorophyll deficiency in plants.

Plant Sci

September 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Chin

Chlorophyll is vital for plants, giving them their green color and playing indispensable crucial role in photosynthesis. Chlorophyll-deficient mutants serve as classic models for studying plant pigment metabolism and typically exhibit chlorotic or albino phenotypes, resulting in major impacts on photosynthetic efficiency and growth development of plants. Understanding the mechanisms behind chlorophyll deficiency not only advances basic plant biology but also supports crop breeding strategies aimed at improving yield, stress tolerance, and adaption.

View Article and Find Full Text PDF