The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution.

Biochem Biophys Res Commun

Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute of Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China. Electronic address:

Published: March 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lead (Pb), as a heavy metal element, has become the most important metal pollutant of the environment. With allocating a relatively higher proportion of its biomass in roots, maize could be a potential important model to study the phytoremediation of Pb-contaminated soil. Here we analyzed the maize root transcriptome of inbred lines 9782 under heavy metal lead (Pb) pollution, which was identified as a non-hyperaccumulator for Pb in roots. In the present study, more than 98 millions reads were mapped to define gene structure and detect polymorphism, thereby to qualify transcript abundance along roots development under Pb treatment. A total of 17,707, 17,440, 16,998 and 16,586 genes were identified in maize roots at four developmental stages (0, 12 h, 24 h and 48 h) respectively and 2,825, 2,626, 2161 and 2260 stage-specifically expressed genes were also identified respectively. In addition, based on our RNA-Seq data, transcriptomic changes during maize root development responsive to Pb were investigated. A total of 384 differentially expressed genes (DEGs) (log2Ratio ≥ 1, FDR ≤ 0.001) were identified, of which, 36 genes with significant alteration in expression were detected in four developmental stages; 12 DEGs were randomly selected and successful validated by qRT-PCR. Additionally, many transcription factor families might act as the important regulators at different developmental stages, such as bZIP, ERF and GARP et al. These results will expand our understanding of the complex molecular and cellular events in maize root development and provide a foundation for future study on root development in maize under heavy metal pollution and other cereal crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2015.01.101DOI Listing

Publication Analysis

Top Keywords

maize root
16
heavy metal
16
developmental stages
12
root development
12
root transcriptome
8
metal pollution
8
genes identified
8
expressed genes
8
maize
7
development
5

Similar Publications

Static Magnetic Field Promotes Wheat Nitrogen Assimilation by Repressing Jasmonates Biosynthesis Through TaHY5.

Plant Biotechnol J

September 2025

College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.

The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.

View Article and Find Full Text PDF

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Dual pathways of photosynthetic inhibition by nanoplastics: Light reaction blockade in soybean and carbon fixation enzyme suppression in corn.

Plant Physiol Biochem

September 2025

Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Center for Ecological Public Health Security of Ye

Nanoplastics (NPs) have raised increasing attention due to their potential environmental risks to terrestrial vegetation and food security. However, for the plants with various photosynthetic pathways, the differences in their photosynthetic response and related mechanisms upon NPs exposure are still unclear. Here, the photosynthetic responses of typical soybean and corn plants under polystyrene NPs (PSNPs) exposure were systematically compared for the first time.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) pose a significant threat to ecosystem security and human health. Laccase, a copper-containing oxidase, can oxidize aromatic compounds, potentially enhancing soil organic contaminants degradation and reducing secondary pollution risks in phytoremediation. However, the combined effects of laccase addition and soil temperature on phytoremediation efficiency remain underexplored.

View Article and Find Full Text PDF

Genomic selection is an extension of marker-assisted selection by leveraging thousands of molecular markers distributed across the genome to capture the maximum possible proportion of the genetic variance underlying complex traits. In this study, genomic prediction models were developed by integrating phenological, physiological, and high-throughput phenotyping traits to predict grain yield in bread wheat (Triticum aestivum L.) under three environmental conditions: irrigation, drought stress, and terminal heat stress.

View Article and Find Full Text PDF