98%
921
2 minutes
20
Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule-1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor-κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia-specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)(low)/PTGS2(high)/ICAM-1(high)/IL-6(high)/IL-8(high) expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of cycling hypoxia in tumor-promoting inflammation amplification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309725 | PMC |
http://dx.doi.org/10.1016/j.neo.2014.11.003 | DOI Listing |
J Appl Physiol (1985)
September 2025
Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, MA.
Assessment of sympathetic transduction into its effects on the cardiovascular system is of great interest in human research. Analysis of sympathetic transduction has been divided into neurovascular and neurohemodynamic, highlighting the sympathetic effect on either regional vascular or systemic pressure responses. This study investigates whether indices of neurovascular transduction are reflected in parallel neurohemodynamic transduction during normoxia and hypoxia, with and without accounting for the confounds of prevailing tachypnea and tachycardia.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Oral Biology, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood-retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD).
View Article and Find Full Text PDFBiology (Basel)
July 2025
School of Agriculture and Bioengineering, Heze University, Heze 274015, China.
Hypoxia represents a critical environmental stressor in aquaculture, significantly disrupting aquatic organisms' physiological homeostasis and thereby constraining the sustainable development of aquaculture industries. To elucidate the mechanisms underlying hypoxia-induced metabolic regulation in aquatic species, this study employed hybrid yellow catfish ( ♀ × ♂) as a model organism to systematically investigate the multidimensional physiological responses in brain, liver, and muscle tissues under hypoxia (0.7 mg/L) and reoxygenation (7.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
August 2025
Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, D
In recent decades, hypoxia has become widespread in coastal waters. Research on the molecular response mechanisms of sea cucumbers (Apostichopus japonicus) under long-term hypoxic stress is limited. Consequently, an 18-day hypoxia experiment was conducted to examine the extreme tolerance.
View Article and Find Full Text PDFMed Oncol
September 2025
Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Darband St, Ghods Sq., Tehran, Iran.
Radiotherapy is a cornerstone in treating head and neck cancers, yet its effectiveness is often limited by factors such as hypoxia and cancer stem cells. This study evaluated the radiosensitizing potential of diosgenin in KB cancer cells and normal HDF cells exposed to 4 Gy X-rays, with or without diosgenin. Cell viability, apoptosis, cell cycle distribution, ROS production, and expression of intrinsic apoptosis-related genes were assessed using MTT assays, flow cytometry, and RT-qPCR, respectively.
View Article and Find Full Text PDF