Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nutrient losses from rice fields can have economic and environmental consequences. Little is known about nutrient losses in surface runoff waters from direct-seeded rice systems, which are common in the United States and increasingly more so in Asia. The objectives of this research were to quantify nutrient losses from California rice fields in surface runoff waters and to determine when and under what conditions losses are greatest. Research was conducted in 10 rice fields varying in residue (burned or incorporated) and water management over a 2-yr period. Concentrations of NH-N and NO-N in runoff water across sites, seasons, and management practices averaged <0.1 mg N L. Runoff water PO-P concentration averaged 0.14 mg L and was not affected by season or straw management practices. However, P fluxes were higher in the winter when rice straw was burned (2.59 kg ha) as opposed to incorporated (0.44 kg ha). Average seasonal runoff water K concentrations did not vary with season and straw management, although they were highest at the onset of the winter season. Average total suspended solids (TSS) concentrations did not vary by season but were highest during the winter in the straw-incorporated fields (46 mg L). Rice fields were sinks for K (4.9 kg K ha) during the growing season. Fields were not significant sources of nutrients or TSS during the growing season; however, during the winter fallow they could be sources of NH-N, P, K, and TSS, especially as water fluxes from fields increased.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2014.03.0135DOI Listing

Publication Analysis

Top Keywords

rice fields
16
surface runoff
12
nutrient losses
12
runoff water
8
direct-seeded rice
8
runoff waters
8
rice
5
nutrients sediments
4
sediments surface
4
runoff
4

Similar Publications

The OsbZIP35-COR1-OsTCP19 module modulates cell proliferation to regulate grain length and weight in rice.

Sci Adv

September 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.

Grain size substantially influences rice quality and yield. In this study, we identified (), a quantitative trait locus encoding an F-box protein that enhances grain length by promoting cell proliferation. The transcription factor OsbZIP35 represses expression, while COR1 interacts with OsTCP19, leading to its degradation.

View Article and Find Full Text PDF

Charged hadron elliptic anisotropies (v_{2}) are presented over a wide transverse momentum (p_{T}) range for proton-lead (pPb) and lead-lead (PbPb) collisions at nucleon-nucleon center-of-mass energies of 8.16 and 5.02 TeV, respectively.

View Article and Find Full Text PDF

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

as the Emerging Causal Agent of Novel Bacterial Leaf Blight in Rice: Characterization and Management in Anhui, China.

Plant Dis

September 2025

Anhui Academy of Agricultural Sciences, Institute of Plant Protection and Agro-Products Safety, Nongkenan 40, Luyang District, Hefei, Anhui province,China, Hefei, Anhui Province, China, 230031;

Since its emergence in 2020, a novel bacterial leaf blight caused by Pantoea ananatis has posed a serious threat to rice production in Anhui Province, China. Through verification via Koch's postulates and three years of field monitoring, P. ananatis strain HQ01 was identified as the dominant pathogen, exhibiting high virulence even at low inoculum concentrations (10² CFU/mL).

View Article and Find Full Text PDF

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF