Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4364406PMC
http://dx.doi.org/10.1038/ncomms7077DOI Listing

Publication Analysis

Top Keywords

amino acid
8
insect odorant
8
odorant receptors
8
acid coevolution
4
coevolution reveals
4
reveals three-dimensional
4
three-dimensional structure
4
structure functional
4
functional domains
4
domains insect
4

Similar Publications

In recent years, the hydrazide skeleton, as a pivotal class of nitrogen-containing structures, has garnered considerable attention in medicinal chemistry and organic synthesis owing to its unique chemical versatility and broad-spectrum biological activities. In this study, a series of thiazole-containing benzoylhydrazine derivatives -, -, and - with structural divergence from conventional hydrazide-based molecular frameworks were designed, synthesized, and evaluated for their antifungal/antioomycete activities. The antifungal/antioomycete assay showed that some of the targeted compounds exhibited remarkable and broad-spectrum antifungal activities.

View Article and Find Full Text PDF

Herein, we report that a novel and efficient bifunctional reagent, benzophenonoxime -(CF) thiocarbonate (BOST), is easily synthesized and successfully applied to the 1, ( ≥ 2)-trifluoromethylthioamination of alkenes under photocatalytic energy transfer conditions. This study not only achieves the radical trifluoromethylthioamination of olefins for the first time but also provides structurally important and diverse SCF-featured amino acid esters and amino nitriles that were previously inaccessible.

View Article and Find Full Text PDF

Genetic code expansion (GCE) technology has primarily been devoted to the introduction of noncanonical amino acids (ncAAs) into ribosomally synthesized proteins or peptides. Its potential for modifying nonribosomal natural products remains unexplored. In this study, we introduce a novel strategy that integrates GCE with the directed evolution of cyclodipeptide synthase (CDPS) to engineer a new class of CDPSs capable of biosynthesizing cyclodipeptides containing ncAAs.

View Article and Find Full Text PDF

Introduction: Anxiety has been described in the initial stages of schizophrenia, and affective flattening in the chronic illness. The etiology remains unknown. Ketamine, a noncompetitive N-Methyl-D-amino-aspartate acid (NMDA) receptor antagonist, is used in rats as a translational model of schizophrenia.

View Article and Find Full Text PDF

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF