98%
921
2 minutes
20
This study investigated the localization of a voltage-gated calcium channel (VGCC) β subunit in the tentacles and cnidocytes of the Portuguese man-of-war using confocal immunocytochemistry. An antibody specific to the Ca(2+) channel β subunit of the Portuguese-man-of-war (PpCaVβ) was generated, and characterized by Western immunoblotting. The antibody labeling was widespread in the ectoderm of cnidosacs of the tentacles. The binding of the antibody on isolated cnidocytes was distributed at the base of the cell and appeared as multiple strong fluorescent plaques located around the basal hemisphere of the cell. The distribution of PpCaVβ in the cnidocyte is consistent with previous studies on other hydrozoans that demonstrated that cnidocytes convey sensory information to other cnidocytes through chemical synapses in which the cnidocyte is pre-synaptic to elements of the animal's nervous system. Importantly and surprisingly, PpCaVβ did not localize to the apical surface of the cnidocyte where the exocytotic events involved in cnidocyst discharge are thought to take place.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/BBLv227n3p252 | DOI Listing |
BME Front
September 2025
State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Electrical deep brain stimulation is effective for epilepsy suppression, but will lead to neural tissue damage and inflammation due to implantation of electrodes and a pulse generator. Transcranial magnetic and transcranial ultrasound stimulation cannot directly generate effective electrical signals in deep brain regions. Here, the use of piezoelectric nanoparticles is proposed as wireless nanostimulators for deep brain electrical stimulation and minimally invasive suppression of epilepsy.
View Article and Find Full Text PDFCell Signal
September 2025
Department of Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Türkiye. Electronic address:
Ischemia/reperfusion (I/R) injury is a pathological condition that arises from the complex interplay of multifaceted mechanisms such as calcium imbalance, oxidative stress, mitochondrial dysfunction, and inflammatory processes. Voltage-gated calcium channels (VGCCs) play a critical role in this pathogenesis by regulating calcium influx into the cell, thereby initiating a cascade of detrimental intracellular events. During the ischemic phase, depletion of ATP reserves leads to the dysfunction of calcium transport systems; in the reperfusion phase, the stimulation of VGCCs by reactive oxygen species (ROS) intensifies intracellular calcium overload.
View Article and Find Full Text PDFCosmetics
June 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
Electrical stimulation of the skin has proven effective in pain management and antibacterial treatment, particularly in wound healing and counteracting the aging processes. The latter processes rely on epidermal cell migration, increased fibroblast proliferation, and upregulation of extracellular matrix protein expression. While an electrical field stimulates these processes, it is unclear how the electrical signal results in transcriptional control.
View Article and Find Full Text PDFCell Mol Life Sci
August 2025
Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease characterized by degeneration of spinal motoneurons, leading to muscle atrophy and synaptic loss. SMN functions in mRNA splicing, transport, and local translation are crucial for maintaining synaptic integrity. Within the presynaptic membrane, the active zone orchestrates the docking and priming of synaptic vesicles.
View Article and Find Full Text PDF