Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch.

Nature

1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.

Published: March 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded β-domain that sequesters the helical YXXXXLΦ motif into a partly buried β-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13999DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
24
disordered proteins
16
folding intrinsically
8
induces folding
8
yxxxxlΦ motif
8
transition binding
8
stable decreasing
8
decreasing affinity
8
disordered
6
proteins
6

Similar Publications

Ras/Raf dimerization model for activation of Raf kinase.

Curr Opin Struct Biol

September 2025

Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA. Electronic address:

Our previously proposed Ras dimerization model is consistent with recent details observed by NMR in that Raf activation is centered on the Ras/Raf dimer, distinct from one in which Ras activates Raf as a monomer with the Raf cysteine rich domain inserted in the membrane. We review mechanistic understanding of Raf activation within nanoclusters of Ras on the membrane, with a shift to dimers upon binding Raf. This sets the stage for a signaling platform composed of Ras/Raf and Galectin dimers that facilitates the release of Raf autoinhibition and folding of the Raf intrinsically disordered region between the Ras-binding domains and the kinase bound to 14-3-3 and MEK.

View Article and Find Full Text PDF

Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.

View Article and Find Full Text PDF

Clustering DNA and RNA molecular dynamics ensembles via secondary structure.

Biophys J

September 2025

Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA. Electronic address:

Macromolecular structure is central to biology. Yet, not all biomolecules have a well-defined fold. Intrinsically disordered regions are ubiquitous, conveying a versatility to function even in otherwise folded structures.

View Article and Find Full Text PDF

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Phase separation in innate immunity: Teleost IL6Ra's evolutionary leap against viruses.

Int J Biol Macromol

September 2025

National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea

Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.

View Article and Find Full Text PDF