98%
921
2 minutes
20
Conversion from fibroblasts to neurons has recently been successfully induced. However, the underlying mechanisms are poorly understood. Here, we find that depletion of p53 alone converts fibroblasts into all three major neural lineages. The induced neuronal cells express multiple neuron-specific proteins and generate action potentials and transmitter-receptor-mediated currents. Surprisingly, depletion does not affect the well-known tumorigenic p53 target, p21. Instead, knockdown of p53 upregulates neurogenic transcription factors, which in turn boosts fibroblast-neuron conversion. p53 binds the promoter of the neurogenic transcription factor Neurod2 and regulates its expression during fibroblast-neuron conversion. Furthermore, our method provides a high efficiency of conversion in late-passage fibroblasts. Genome-wide transcriptional analysis shows that the p53-deficiency-induced neurons exhibit an expression profile different from parental fibroblasts and similar to control-induced neurons. The results may help to understand and improve neural conversion mechanisms to develop robust neuron-replacement therapy strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270413 | PMC |
http://dx.doi.org/10.1016/j.celrep.2014.11.040 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Ocular Trauma, Laboratory of Molecular Ophthalmology, Tianjin Medical Univer
Ocular fibrosis, a severe consequence of excessive retinal wound healing, can lead to vision loss following retinal injury. Proliferative vitreoretinopathy (PVR), a common form of ocular fibrosis, is a major cause of blindness, characterized by the formation of extensive fibrous proliferative membranes. Understanding the cellular origins of PVR-associated fibroblasts (PAFs) is essential to decipher the mechanisms of ocular wound healing.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Systems Biology, Columbia University, New York, NY 10032, USA.
Adipose stromal cells (ASCs) are perivascular mesenchymal progenitors of adipose tissue. In cancer patients, ASCs can mobilize and migrate to the tumor, where they subsequently play an important role in cancer progression. This biological process involves the conversion of recruited ASCs into cancer-associated fibroblasts (CAFs).
View Article and Find Full Text PDFCell Rep
September 2025
Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA. Electronic address:
Cell states evolve through the combined activity of signaling pathways and gene networks. While transcription factors can direct cell fate, these factors rely on a receptive cell state. How signaling levels contribute to the emergence of receptive cell states remains poorly defined.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
August 2025
Department of Pediatrics, the First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang, China.
Objective: Bronchopulmonary dysplasia (BPD), a prevalent chronic pulmonary disorder predominantly affecting preterm infants, is characterized by impaired lung development and persistent inflammatory-mediated lung injury. Dermal fibroblast-derived exosomes (DF-Exos) have been demonstrated to alleviate inflammation and promote epithelial tissue repair; however, their role in lung injury remains to be elucidated. This study aimed to evaluate the effects of DF-Exos on BPD and explore their relationship with autophagy.
View Article and Find Full Text PDFBiomolecules
July 2025
Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang Uni
In the context of critical challenges in curcumin-modified polyurethane synthesis-including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility-a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.
View Article and Find Full Text PDF