A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Slow-releasing rapamycin-coated bionic peripheral nerve scaffold promotes the regeneration of rat sciatic nerve after injury. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: To investigate the effect of locally slow-released rapamycin (RAPA) from the bionic peripheral nerve scaffold on rat sciatic nerve regeneration in the early phase of nerve injury.

Main Methods: Slow-releasing RAPA-polyhydroxy alcohol (PLGA) microspheres were prepared and tested for microsphere diameter and slow-release effect in vitro after loading onto nerve scaffold. A total of 48 male SD rats were randomly divided into control group and 3 experimental groups as follows: group 1: RAPA-PLGA scaffold; group 2: RAPA scaffold; and group 3: scaffold alone. In the control group, a 15mm sciatic nerve was excised and religated reversely. In the experimental groups, the scaffolds were used to bridge a defect of 15mm sciatic nerve. The outcome of nerve regeneration was evaluated using neurophysiological and neuromuscular morphological techniques.

Key Findings: The RAPA-PLGA microspheres displayed a smooth exterior. The slow-release of RAPA in group 1 lasted for 14days. The sciatic nerve function index (SFI) and electrophysiological and morphological features were examined 12weeks after the surgery in all groups to reveal various degrees of ipsilateral sciatic nerve regeneration. The SFI values at 12weeks showed no significant difference between the RAPA-PLGA scaffold and control groups; morphological observations revealed that the outcomes of nerve regeneration in the above 2 groups were similar and significantly better than those in the RAPA scaffold and scaffold alone groups.

Significance: RAPA-PLGA microsphere-loaded bionic peripheral nerve scaffold gradually released RAPA locally in the early phase of sciatic nerve regeneration, reduced the secondary nerve injury, and evidently promoted the regeneration of peripheral nerve.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2014.12.005DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
28
nerve regeneration
20
nerve
16
peripheral nerve
16
nerve scaffold
16
bionic peripheral
12
scaffold
10
rat sciatic
8
nerve injury
8
early phase
8

Similar Publications