Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Near-infrared spectroscopy (NIRS) is a powerful non-destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in line in industries, in vivo with biomedical applications, or in field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentration. Instead of spectral pre-processing, which is commonly used by NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, i.e., coupling polarized light with NIR spectrometry, to free spectra from scattering effect. This should allow us to retrieve linear and steady conditions for spectral analysis. When tested in visible-NIR (Vis-NIR) range (400-800 nm) on model media, mixtures of scattering and absorbing particles, the setup provided significant improvements in absorber concentration estimation precision as well as in the quality and robustness of the calibration model.

Download full-text PDF

Source
http://dx.doi.org/10.1366/14-07539DOI Listing

Publication Analysis

Top Keywords

polarized light
8
scattering
5
improvement chemical
4
chemical content
4
content prediction
4
prediction model
4
model powder
4
powder system
4
system reducing
4
reducing multiple
4

Similar Publications

Photofunctionalization of Light Alkanes by FeO/BCN at 12 °C.

J Am Chem Soc

September 2025

State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.

The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.

View Article and Find Full Text PDF

Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.

View Article and Find Full Text PDF

Contrastive Study on Substitution of the Bulky Phosphanide [P(SiPr)] toward Heavier Tetrylenes.

Inorg Chem

September 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.

The super bulky sodium phosphanide, NaP(SiPr), was reacted with amidinatotetrylenes LECl (L = PhC(NBu), E = Si, Ge), resulting in the formation of phosphasilene LSi(SiPr) = PSiPr () and phosphanido germylene LGeP(SiPr) (), respectively. Investigation on the reactivity of and toward elemental sulfur was carried out, where a stepwise reaction yielding the silanethione LSi(=S)SiPr () and the silicon thioester analogue LSi(=S)SSiPr () was observed in the case of , while the treatment of with sulfur exclusively afforded the germanium thioester analogue. In addition, the reactions of with Fe(CO) and GeCl·1,4-dioxane led to the germylene-coordinated iron carbonyl and the asymmetric Ge-Ge-bonded complex, respectively, exhibiting the reactivity of the lone pair as well as a weak Ge-P bond.

View Article and Find Full Text PDF

Static Magnetic Field Promotes Wheat Nitrogen Assimilation by Repressing Jasmonates Biosynthesis Through TaHY5.

Plant Biotechnol J

September 2025

College of Agronomy, Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, Henan Agricultural University, Zhengzhou, China.

The magnetic field is a continuously present environmental factor. It has been found that many species, including plants, can sense and utilise it. However, the effects of the magnetic field on plants and its potential utilisation, especially in crops, have been little explored.

View Article and Find Full Text PDF

Background: Blood orange peels represent an underutilized source of high-value flavonoids with broad bioactivities. Traditional single-extraction techniques for citrus flavonoids suffer from low efficiency due to polarity limitations, significantly restricting their industrial-scale development and application. As a result, there is an urgent need to develop green and efficient extraction processes to improve both the coverage and yield of citrus flavonoids.

View Article and Find Full Text PDF