Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

VAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta. Following immunization of a llama with the full-length VAR2CSA recombinant protein, we have expressed and characterized a panel of 19 nanobodies able to recognize the recombinant VAR2CSA as well as the surface of erythrocytes infected with parasites originating from different parts of the world. Domain mapping revealed that a large majority of nanobodies targeted DBL1X whereas a few of them were directed towards DBL4ε, DBL5ε and DBL6ε. One nanobody targeting the DBL1X was able to recognize the native VAR2CSA protein of the three parasite lines tested. Furthermore, four nanobodies targeting DBL1X reproducibly inhibited CSA adhesion of erythrocytes infected with the homologous NF54-CSA parasite strain, providing evidences that DBL1X domain is part or close to the CSA binding site. These nanobodies could serve as useful tools to identify conserved epitopes shared between different variants and to characterize the interactions between VAR2CSA and CSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376981PMC
http://dx.doi.org/10.1038/srep07373DOI Listing

Publication Analysis

Top Keywords

full-length var2csa
8
dbl1x domain
8
erythrocytes infected
8
targeting dbl1x
8
var2csa
6
dbl1x
5
llama immunization
4
immunization full-length
4
var2csa generates
4
generates cross-reactive
4

Similar Publications

Structure-guided design of VAR2CSA-based immunogens and a cocktail strategy for a placental malaria vaccine.

PLoS Pathog

March 2024

Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen.

View Article and Find Full Text PDF

Expression of Large Full-Length PfEMP1 Proteins in HEK293 Cells.

Methods Mol Biol

July 2022

Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins expressed on the surface of red blood cells infected by Plasmodium falciparum. PfEMP1 proteins play a vital role in parasite virulence, and thus are important vaccine candidates to prevent severe disease. VAR2CSA is one specific PfEMP1 essential for pregnancy malaria pathogenesis, and the primary target in pregnancy malaria vaccine development.

View Article and Find Full Text PDF

Placental malaria (PM) is a deadly syndrome most frequent and severe in first pregnancies. PM results from accumulation of -infected erythrocytes (IE) that express the surface antigen VAR2CSA and bind to chondroitin sulfate A (CSA) in the placenta. Women become PM-resistant over successive pregnancies as they develop anti-adhesion and anti-VAR2CSA antibodies, supporting VAR2CSA as the leading PM-vaccine candidate.

View Article and Find Full Text PDF

Plasmodium falciparum-infected erythrocytes (IE) sequester in the placenta via surface protein VAR2CSA, which binds chondroitin sulfate A (CSA) expressed on the syncytiotrophoblast surface, causing placental malaria (PM) and severe adverse outcomes in mothers and their offspring. VAR2CSA belongs to the PfEMP1 variant surface antigen family; PfEMP1 proteins mediate IE adhesion and facilitate parasite immunoevasion through antigenic variation. Here we produced deglycosylated (native-like) and glycosylated versions of seven recombinant full-length VAR2CSA ectodomains and compared them for antigenicity and adhesiveness.

View Article and Find Full Text PDF