von Willebrand factor (VWF) is a multimeric protein, the size of which is regulated via ADAMTS13-mediated proteolysis within the A2 domain. We aimed to isolate nanobodies distinguishing between proteolyzed and non-proteolyzed VWF, leading to the identification of a nanobody (designated KB-VWF-D3.1) targeting the A3 domain, the epitope of which overlaps the collagen-binding site.
View Article and Find Full Text PDFChromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins.
View Article and Find Full Text PDFIndustrial production of therapeutic monoclonal antibodies is mostly performed in eukaryotic-based systems, allowing posttranslational modifications mandatory for their functional activity. The resulting elevated product cost limits therapy access to some patients. To address this limitation, we conceptualized a novel immunotherapeutic approach to redirect a preexisting polyclonal antibody response against Epstein-Barr virus (EBV) toward defined target cells.
View Article and Find Full Text PDFVAR2CSA is a leading candidate for developing a placental malaria (PM) vaccine that would protect pregnant women living in malaria endemic areas against placental infections and improve birth outcomes. Two VAR2CSA-based PM vaccines are currently under clinical trials, but it is still unclear if the use of a single VAR2CSA variant will be sufficient to induce a broad enough humoral response in humans to cross-react with genetically diverse parasite populations. Additional immuno-focusing vaccine strategies may therefore be required to identify functionally conserved antibody epitopes in VAR2CSA.
View Article and Find Full Text PDFPlasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P.
View Article and Find Full Text PDFBackground: VAR2CSA is the lead antigen for developing a vaccine that would protect pregnant women against placental malaria. A multi-system feasibility study has identified E. coli as a suitable bacterial expression platform allowing the production of recombinant VAR2CSA-DBL1x-2x (PRIMVAC) to envisage a prompt transition to current Good Manufacturing Practice (cGMP) vaccine production.
View Article and Find Full Text PDFOver 50 million women are exposed to the risk of malaria during pregnancy every year. Malaria during pregnancy is a leading global cause of maternal morbidity and adverse pregnancy outcomes. Adhesion of -infected erythrocytes to placental chondroitin-4-sulfate (CSA) has been linked to the severe disease outcome of placental malaria.
View Article and Find Full Text PDFPlasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane.
View Article and Find Full Text PDFMalar J
January 2016
Malar J
December 2015
Background: Malaria is still one of the most prevalent infectious diseases in the world. Sequestration of infected erythrocytes (IEs) is the prime mediator of disease. Cytoadhesion of IEs is mediated by members of the highly diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1).
View Article and Find Full Text PDFThe human malaria parasite, Plasmodium falciparum, is able to evade spleen-mediated clearing from blood stream by sequestering in peripheral organs. This is due to the adhesive properties conferred by the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family exported by the parasite to the surface of infected erythrocytes.
View Article and Find Full Text PDFPlasmodium falciparum multidomain protein VAR2CSA stands today as the leading vaccine candidate against pregnancy-associated malaria (PAM). Most of the studies aiming to decrypt how naturally acquired immunity develops have assessed the immune recognition of individual VAR2CSA Duffy-binding-like (DBL) domains, thus overlooking the presence of conformational epitopes resulting from the overall folding of the full-length protein. In order to characterize the development of humoral immunity toward VAR2CSA, we made use of a large cohort of 293 Senegalese pregnant women to assess the level of recognition by plasma IgG of the full-length VAR2CSA protein of the 3D7 parasite strain (3D7-VAR2CSA), the CSA-binding multidomains 3D7-DBL1X to -DBL3X (3D7-DBL1X-3X), and the CSA nonbinding multidomains 3D7-DBL4ε to -DBL6ε (3D7-DBL4ε-6ε), as well as individual 3D7-DBL domains.
View Article and Find Full Text PDFVAR2CSA stands today as the leading vaccine candidate aiming to protect future pregnant women living in malaria endemic areas against the severe clinical outcomes of pregnancy associated malaria (PAM). The rational design of an efficient VAR2CSA-based vaccine relies on a profound understanding of the molecular interactions associated with P. falciparum infected erythrocyte sequestration in the placenta.
View Article and Find Full Text PDFThe preparation of a V(H)H (nanobody) named IH4 that recognizes human glycophorin A (GPA) is described. IH4 was isolated by screening a library prepared from the lymphocytes of a dromedary immunized by human blood transfusion. Phage display and panning against GPA as the immobilized antigen allowed isolating this V(H)H.
View Article and Find Full Text PDFPlasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a family of adhesins of the falciparum species of the malaria parasite, is exposed on the surface of the infected erythrocyte. In general, only one PfEMP1 variant is expressed at a time but switching between variants occurs, changing both host-cell receptor specificity and serotype. The PfEMP1 variant VAR2CSA causes sequestration of infected erythrocytes in the intervillous spaces of the placenta via the glycosaminoglycan chondroitin sulfate A.
View Article and Find Full Text PDFVar2CSA, a key molecule linked with pregnancy-associated malaria (PAM), causes sequestration of Plasmodium falciparum infected erythrocytes (PEs) in the placenta by adhesion to chondroitin sulfate A (CSA). Var2CSA possesses a 300 kDa extracellular region composed of six Duffy-binding like (DBL) domains and a cysteine-rich interdomain region (CIDRpam) module. Although initial studies implicated several individual var2CSA DBL domains as important for adhesion of PEs to CSA, new studies revealed that these individual domains lack both the affinity and specificity displayed by the full-length extracellular region.
View Article and Find Full Text PDFThe human malaria parasite Plasmodium falciparum can cause infected red blood cells (iRBC) to form rosettes with uninfected RBC, a phenotype associated with severe malaria. Rosetting is mediated by a subset of the Plasmodium falciparum membrane protein 1 (PfEMP1) variant adhesins expressed on the infected host-cell surface. Heparin and other sulfated oligosaccharides, however, can disrupt rosettes, suggesting that therapeutic approaches to this form of severe malaria are feasible.
View Article and Find Full Text PDFBackground: Protection against pregnancy associated malaria (PAM) is associated with high levels of anti-VAR2CSA antibodies. This protection is obtained by the parity dependent acquisition of anti-VAR2CSA antibodies. Distinct parity-associated molecular signatures have been identified in VAR2CSA domains.
View Article and Find Full Text PDFPregnancy-associated malaria (PAM) arises from sequestration of Plasmodium falciparum-parasitized erythrocytes (PE) in the placenta, leading to chronic symptoms in the expectant mother and serious consequences for fetal development. Placental sequestration has been linked to binding of chondroitin sulphate A (CSA) by the var2CSA variant of PfEMP1 expressed on the PE surface, and a substantial body of evidence shows that the immune response to var2CSA gives an effective protection against PAM. We have expressed the var2CSA-DBL5epsilon domain, derived from a placental isolate from Senegal, as soluble product in Escherichia coli and have shown using different criteria that the recombinant protein is obtained with the native conformation.
View Article and Find Full Text PDFPregnancy-associated malaria (PAM) is a serious consequence of sequestration of Plasmodium falciparum-parasitized erythrocytes (PE) in the placenta through adhesion to chondroitin sulfate A (CSA) present on placental proteoglycans. Recent work implicates var2CSA, a member of the PfEMP1 family, as the mediator of placental sequestration and as a key target for PAM vaccine development. Var2CSA is a 350 kDa transmembrane protein, whose extracellular region includes six Duffy-binding-like (DBL) domains.
View Article and Find Full Text PDFRosetting of erythrocytes infected with Plasmodium falciparum is frequently observed in children with severe malaria. This adhesion phenomenon has been linked to the DBL1alpha domain of P. falciparum erythrocyte membrane protein 1 (PfEMP1) in three laboratory clones: FCR3S1.
View Article and Find Full Text PDFEpidemiological data point to an increased risk of HIV-1 mother-to-child transmission in pregnant women with malaria, by unknown mechanisms. We show here that surface binding of a recombinant Plasmodium falciparum adhesin to chondroitin sulphate A proteoglycans increases HIV-1 replication in the human placental cell line BeWo, probably by a P. falciparum adhesin-induced long-terminal repeat-driven TNF-alpha stimulation.
View Article and Find Full Text PDF