Sampling strategies for frequency spectrum-based population genomic inference.

BMC Evol Biol

Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The allele frequency spectrum (AFS) consists of counts of the number of single nucleotide polymorphism (SNP) loci with derived variants present at each given frequency in a sample. Multiple approaches have recently been developed for parameter estimation and calculation of model likelihoods based on the joint AFS from two or more populations. We conducted a simulation study of one of these approaches, implemented in the Python module δaδi, to compare parameter estimation and model selection accuracy given different sample sizes under one- and two-population models.

Results: Our simulations included a variety of demographic models and two parameterizations that differed in the timing of events (divergence or size change). Using a number of SNPs reasonably obtained through next-generation sequencing approaches (10,000 - 50,000), accurate parameter estimates and model selection were possible for models with more ancient demographic events, even given relatively small numbers of sampled individuals. However, for recent events, larger numbers of individuals were required to achieve accuracy and precision in parameter estimates similar to that seen for models with older divergence or population size changes. We quantify i) the uncertainty in model selection, using tools from information theory, and ii) the accuracy and precision of parameter estimates, using the root mean squared error, as a function of the timing of demographic events, sample sizes used in the analysis, and complexity of the simulated models.

Conclusions: Here, we illustrate the utility of the genome-wide AFS for estimating demographic history and provide recommendations to guide sampling in population genomics studies that seek to draw inference from the AFS. Our results indicate that larger samples of individuals (and thus larger AFS) provide greater power for model selection and parameter estimation for more recent demographic events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4269862PMC
http://dx.doi.org/10.1186/s12862-014-0254-4DOI Listing

Publication Analysis

Top Keywords

model selection
16
parameter estimation
12
parameter estimates
12
demographic events
12
sample sizes
8
accuracy precision
8
precision parameter
8
parameter
6
afs
5
model
5

Similar Publications

Background: Owing to the unique characteristics of digital health interventions (DHIs), a tailored approach to economic evaluation is needed-one that is distinct from that used for pharmacotherapy. However, the absence of clear guidelines in this area is a substantial gap in the evaluation framework.

Objective: This study aims to systematically review and compare the economic evaluation literature on DHIs and pharmacotherapy for the treatment of depression.

View Article and Find Full Text PDF

Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.

Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.

View Article and Find Full Text PDF

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

Expression of long non-coding RNAs MALAT1, MEG3, and XIST in gestational diabetes mellitus: a cross-sectional study.

Acta Diabetol

September 2025

Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.

Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.

View Article and Find Full Text PDF

Do generic population utility scores accurately represent real-world experienced health?

Qual Life Res

September 2025

School of Pharmacy, CHOICE Institute, University of Washington, 1956 NE Pacific St H362, Seattle, WA, 98195, USA.

Purpose: Typically, cost-effectiveness analyses use societal utility weights for health states. These anticipated utility weights are derived from asking the general population to assess the impacts of hypothetical health states on their quality-of-life. This study evaluates how these weights align with real-world self-reported experienced health statuses.

View Article and Find Full Text PDF