98%
921
2 minutes
20
Objectives: To evaluate whether changes in hydration status (reflecting fluid retention) would be detected by bioelectrical impedance vector analysis (BIVA) and phase angle during hospitalization for acute decompensated heart failure (ADHF) and after clinical stabilization.
Methods: Patients admitted to ADHF were evaluated at admission, discharge and after clinical stabilization (3 mo after discharge) for dyspnea, weight, brain natriuretic peptide, bioelectrical impedance resistance, reactance, and phase angle. Generalized estimating equations and chi-square detected variations among the three time points of evaluation.
Results: Were included 57 patients: Mean age was 61 ± 13 y, 65% were male, LVEF was 25 ± 8%. During hospitalization there were improvements in clinical parameters and increase in resistance/height (from 250 ± 72 to 302 ± 59 Ohms/m, P < 0.001), reactance/height (from 24 ± 10 to 31 ± 9 Ohms/m, P < 0.001), and phase angle (from 5.3 ± 1.6 to 6 ± 1.6°, P = 0.007). From discharge to chronic stability, both clinical and BIVA parameters remained stable. At admission, 61% of patients had significant congestion by BIVA, and they lost more weight and had higher improvement in dyspnea during hospitalization (P < 0.05). At discharge, more patients were in the upper half of the graph (characterizing some degree of dehydration) while at chronic stability normal hydration status was more prevalent (P < 0.001).
Conclusions: BIVA and phase angle were able to detect significant changes in hydration status during ADHF, which paralleled the clinical course of recompensation, both acutely and chronically. The classification of congestion by BIVA at admission identified patients with more pronounced changes in weight and dyspnea during compensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2014.05.004 | DOI Listing |
J Comput Neurosci
September 2025
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFJB JS Open Access
September 2025
Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan.
Background: Lower extremity alignment in knee osteoarthritis (OA) is conventionally assessed using standing radiographs. However, symptoms often manifest during gait. Understanding dynamic alignment during gait may help characterize disease progression and inform treatment strategies.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Orthopaedic Surgery, Kobe Red Cross Hospital, Hyogo, Japan.
This study aims to clarify the dynamic changes in the cervical lordotic angle (CLA) during normal swallowing using an automated motion analysis method. Physiological cervical lordosis is crucial for spinal alignment and musculoskeletal function. While previous studies have noted the relevance of cervical curvature in clinical contexts, its dynamic modulation during swallowing has not been well studied.
View Article and Find Full Text PDFSports Biomech
September 2025
Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, and the School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
The objective of this study was to compare joint angles and spatiotemporal variables between male and female ice hockey players during skating slap shots. Thirty-nine collegiate players (25 men, 14 women) participated. Kinematic data were collected using a Xsens 17-inertial measurement system.
View Article and Find Full Text PDF